• Title/Summary/Keyword: Engine speed

Search Result 1,990, Processing Time 0.027 seconds

An Experimental Study on the Improvement of Turbocharger Lag by Means of Air Injection in a Turbocharged Diesel Engine

  • Choi, Nag-Jung;Oh, Seong-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.951-962
    • /
    • 2010
  • An experimental study was performed to investigate the improvement of response performance of a turbocharged diesel engine under the operating conditions of low speed and fast acceleration. In this study, the experiment for improving the low speed and acceleration performance is performed by means of injecting air into the intake manifold of compressor exit during the period of low speed and application of a fast acceleration from low speed. The effects of air injection into the intake manifold on the response performance were investigated at various applicant parameters such as air injection pressure, accelerating rate, accelerating time, engine speed and load. The experimental results show that air injection into the intake manifold at compressor exit is closely related to the improvement of turbocharger lag under low speed and accelerating conditions of a turbocharged diesel engine. During the rapid acceleration period, the air injection into the intake manifold of turbocharged diesel engine indicates the improvement of the combustion characteristics and gas pressure in the cylinder. At low speed range of the engine, the effect of air injection shows the improvement of the pressure distribution of turbocharger and combustion pressure during the period of gas exchange pressure.

A Study on Engine Speed Control Using Microcomputer (마이크로 컴퓨터를 이용(利用)한 엔진회전속도(回轉速度) 제어(制御)에 관한 연구(硏究))

  • Min, Y.B.;Lee, K.M.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 1986
  • Speed control of kerosene engine by the combination of a manual throttle and centrifugal weight type governor is not adequate for evaluating energy requirements in laboratory and field performance tests. This paper describes an engine speed control system. This system consists of Apple-II microcomputer, step motor set to the throttle shaft directly, step motor driving and interfacing circuit, engine performance data acquisition system for measuring load, speed and time and potentiometer as speed adjustor. The performance of this system was successful in maintaining engine speed within ${\pm}37$ rpm of reference speed indicated by computer and potentiometer.

  • PDF

Engine torque and engine/automatic trandmission speed control systems using time delay control (시간지연 제어를 이용한 엔진 토크 및 엔진/자동변속기 속도 제어 시스템)

  • Song, Jae-Bok;Lee, Seung-Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 1996
  • Time delay control(TDC) law has been recently suggested as an effective control technique for nonlinear time-varying systems with uncertain dynamics and/or unpredictable disturbances. This paper focuses on the applications of the TDC algorithm to torque control of an engine system and speed control of an engine/automatic transmission system. Through the stability analysis of the engien system based on TDC, determination of the appropriate time delay and control factor is investigated. It was revealed that the size of time delay of the TDC law should be greater than that of transport delay of the system for both stability and better control performance. Simulation and experimental results for the engine torque control and engine/automatic transmission speed control systems show both relatively good command following and disturbance rejection properties. However, TDC controller shows rather slow responses when applied to the system with large transport delay.

  • PDF

ENGINE CONTROL USING SPEED FEEDBACK

  • Stotsky, A.;Solyom, S.;Kolmanovsky, I.V.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.477-481
    • /
    • 2007
  • In this article we present a new, reference model based, unified strategy for engine control. Three main modes are considered: first is the driver control mode where the driver controls the engine via the pedal position; second is the dashpot mode, that is, when the driver takes his foot off the pedal; and, lastly is the idle speed control mode. These modes are unified so that seamless transitions between modes now becomes possible. The unification is achieved due to the introduction of a reference model for the engine speed whereby only the desired engine speed is different for different modes while the structure of the control system remains the same for all the modes. The scheme includes an observer that estimates unknown engine load torque. A proof of robustness with respect to unknown load disturbances both within the operating modes and during intermode transitions is given.

Engine Performance Simulation to Evaluate the NOx Reduction of Charge Air Moisturizer System in a Medium Speed Diesel Engine (흡기가습 중형 디젤 엔진의 NOx 저감 평가를 위한 성능 해석 연구)

  • Kim, Ki-Doo;Park, Hyoung-Keun;Kim, Byung-Suck;Ha, Ji-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.15-16
    • /
    • 2005
  • In this study, the characteristics of NOx reduction by using charge air moisturizer system were evaluated by engine performance simulation in medium speed diesel engines. The results of performance simulation were verified by experimental results of single cylinder medium speed diesel engine equipped with charge air moisturizer system. Performance simulation was carried out to evaluate charge air moisturizer system of turbocharged diesel engine, HYUNDAI HiMSEN 9H25/33 engine. Those results show 50% NOx reduction at dew point $80^{\circ}C$ and charge air pressure 4bar.

  • PDF

A Study on the Estimation of the Load Torque in a Diesel Engine (디젤기관의 부하토오크 추정에 관한 연구)

  • 김병덕;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.29-35
    • /
    • 1993
  • Recent marine propulsion diesel engines tend to become slower in speed and longer in stroke for the higher engine efficiency, and in these long stroke and slow speed engines the digital governors are highly recommended to be used. But, in the present digital governors only the feedback of the engine rpm-signal is used for the engine speed control. If the load torque of the engine can be measured or estimated and the torque feedback loop is added to the present digital governor, it is expected that the speed control performance of the digital governor will be highly improved. In this paper, a new method is proposed to estimate the load torque of the diesel engine from the measured signals of fuel oil and rpm. And it is also suggested that the Kalman filter can be used for the estimation of engine torque.

  • PDF

An Experimental Study on Characteristics of Temperature Separation in a Vortex Tube for Diesel Engine Exhaust Gas (Vortex Tube의 승용 디젤기관 배기가스 온도 분리특성에 관한 연구)

  • Jung, Young-Chul;Choi, Doo-Seuk;Im, Seok-Yeon;Kim, Hong-Ju;Ryu, Jeong-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • An object of this study is to confirm the opening amount of the throttle valve that is begun the temperature separation of vortex tube for various engine speed and load condition in a common rail diesel engine. The vortex tube located at downstream of the exhaust manifold is a device separating the incoming exhaust gas to hot and cold stream. To find optimum separation efficiency of vortex tube, the opening amount of throttle valve has been investigated for various engine speed and load conditions. Engine speed was found that the influence of engine speed was dominant compared with that of engine load. As engine speed was increased, the throttle opening amount starting temperature separation was reduced.

Idle Speed Control of Automotive Engine using Fuzzy Logic (퍼지논리를 이용한 자동차 엔진의 공회전 속도 제어)

  • 장재호;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.53-62
    • /
    • 1994
  • In this paper, a fuzzy logic-based idle speed controller is designed for automotive engine with a purpose of high efficiency and low pollution. When the idle speed is low engine operation is not smooth, otherwise fuel consumption is incresed. Therefore the idle speed must be maintained as low as possible within the scope that ensures smooth operation of engine. By simulation, we show that the idle speed controller has generated a proper control signal as engine condition or enviornment varies, and also operated well for unexpected cases. Also, an engine simulator, which is used as a basic tool for controller design, is developed and utilized for reduction of development time and cost.

  • PDF

A study on the viscous torsional vibration damper in a high speed diesel engine (고속디이젤 기관의 점성비틀림 진동댐퍼에 관한 연구)

  • 한영출
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.20-30
    • /
    • 1982
  • Recent diesel engine has achieved high speed running comparable to that of gasoline engine as a speed improvement effort. Consequently, torsional vibration of high-speed diesel engine induced vibration nosise, reduced horsepower and the like. Viscous damper which is thought to be effective in curtailing the torsional vibration was studied over a wide range of speed. In this investigation, a water cooling, 4-cycle high-speed diesel engine(Msx. 3500 rpm)was used for the study. Theoretical analysis was made by assuming the engine to be an ideal equivalent system(length, moment of inertia) i. e. the multi-degree of freedom equivalent torsional vibration system with damper was analyzed. In the analysis, the inertia moment of suitable damper for this experiment was calculated by varying the relative damping coefficient of damper of engine for each damper. Furthermore, in the torsional vibration experiment, the torsional vibration amplitude of the crankshaft system was measured when the engine was equipped with dampers of different moments of inertia and also when the engine was equipped without dampers. The experimental results were compared with the analytical values and were found to be satisfied. The results of this investigation are summarized below; (1) It was found that for the engine equipped with dampers, the torsional vibration amplitude was reduced to about one third of those without dampers. (2) The optimum value of inertia moment of viscous damper for the engine was found to be about Id=1.05(kg.cm.s$^{2}$) (3) The optimum damping coefficient and the ratio of moment of inertia for the engine were found to be about Ca= 850(kg.cm.s), Rd=0.509, respectively (b1 dapmper).

  • PDF

A Study on the Dynamic Characteristics of Axial Vibration Damper for Two Stroke Low Speed Diesel Engine (저속 2행정 디젤엔진의 종진동 댐퍼 동특성에 관한 연구)

  • 이돈출;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 1994
  • Since two oil shocks in 1970s, all of engine makers have persevered in their efforts to reduce specific fuel consumption and to increase engine power rate as much as possible in marine diesel engines. As a result, the maximum pressure in cylinders of these engines has been continuously increased. It causes direct axial vibration. The axial stiffness of crank shaft is low compared to old types of engine models by increasing the stroke/bore ratio and its major critical speed might occur within engine operation range. An axial damper, therefore, needs to be installed in order to reduce the axial vibration amplitude of the crankshaft. Usually the main critical speed of axial vibration for the propulsion shafting system with a 4-8 cylinder engine exists near the maximum continuous revolution(MCR). In this case, when the damping coefficient of the damper is increased within the allowance of the structural strength, its stiffness coefficient is also increased. Therefore, the main critical speed of axial vibration can be moved beyond the MCR. It has the same function as a conventional detuner. However, in the case of a 9-12 cylinder engine, the main critical speed of axial vibration for the propulsion shafting system exists below the MCR and thus the critical speed cannot be moved beyond the MCR by using an axial damper. In this case, the damping coefficient of an axial damper should be adjusted by considering the range of engine revolution, the location and vibration amplitude of the critical speed, the fore and aft vibration of the hull super structure. It needs to clarify the dynamic characteristics of the axial vibration damper to control the axial vibration appropriately. Therefore authors suggest the calculation method to analyse the dynamic characteristics of axial vibration damper. To confirm the calculation method proposed in this paper, it is applied to the propulsion shafting system of the actual ships and satisfactory results are obtained.

  • PDF