• Title/Summary/Keyword: Engine speed

Search Result 1,994, Processing Time 0.029 seconds

Effect of Number of Heating Walls on Heat Transfer in the Reciprocating Square Channel (왕복운동을 하는 사각채널에서 가열벽면의 수가 열전달에 미치는 효과)

  • Kim Myung Ho;Bae Sung Taek;Ahn Soo Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.161-167
    • /
    • 2005
  • The improvements of the propulsive engine efficiencies could reduce the fuel consumption. Therefore. for a marine main diesel engine the substantial increase of stroke bore ratio. so that the engine speed can be significantly reduced in order to increase the Propulsive efficiency. As a typical example. a Sulzer RTA 60C engine has acylinder diameter of 600 mm and each cylinder is capable of delivering 2.369 kW in the speed range 91-114 rpm. In order to Provide basic data for thermal system of marine engine. this work performs an experimental study of heat transfer in a square channel with one rib-roughened wall under sin91e mode of reciprocating oscillation. A selection of heat transfer measurements illustrates the manner by which the reciprocating channel with two opposite heating walls has the higher heat transfer Performance than with four heating wall.

Effect of EGR on power and exhaust emissions in diesel engine (디젤엔진의 출력 및 배기가스에 미치는 EGR의 영향)

  • Song, Kyu-keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.870-875
    • /
    • 2015
  • Diesel engines are widely used due to superior power and fuel consumption, however there are many challenges in exhaust gas management. Exhaust gas recirculation (EGR) is the most effective technique for reducing mono-nitrogen oxide (NOx) emissions in a diesel engine, in comparison with other catalytic technologies. In addition, the technology has a number of advantages in terms of economic efficiency and implementation. In this study, the effects on the power and exhaust characteristics of diesel engines equipped with EGR systems were investigated. It was found that as the EGR rate increased, horsepower expressed as IHP and BHP decreased. The net effect of the application of EGR was measured at various engine speeds. EGR technology caused decreases in BHP of around 9% during low engine speed and 3.5% during high engine speed. Additionally, NOx emissions reduced as the EGR rate increased, and increased as engine speed increased. However, smoke emissions increased as the EGR rate increased, and decreased as engine speed increased. The optimum operating conditions and ERG rate to simultaneously achieve minimum NOx and smoke emissions were investigate. It was found that as the EGR rate increased, optimal operating speed for minimal NOx and smoke also increased. Keywords: Diesel engine, Exhaust gas recirculation, Power perfomance, Emission characteristics, NOx, Smoke

A Study on Efficient Utilization of Power-Tiller Engines (동력경운기(動力耕耘機) 기관(機関)의 효율적(效率的) 이용(利用)에 관한 연구(硏究))

  • Ryu, Kwan Hee;Park, Keum Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 1984
  • The engines mounted on power-tillers are used as power source in various kinds of works such as plowing, harrowing, transporting, spraying, water pumping and threshing, etc. But the engines have not been used effectively from a standpoint of fuel consumption because of lack of proper power transmission system and lack of understanding of fuel consumption characteristics of the engines. Therefore, this study was attempted to establish proper power transmission system between the power-tiller engines and various implements. In order to accomplish the above objective, firstly, power requirement and pulley sizes for various implements, which are driven by the power-tiller engines, were investigated to find out whether the power transmission system is proper. Secondly, partload variable engine-speed test was conducted for 3 different sizes of diesel engines to measure to specific fuel consumption. Thirdly, the present power transmission systems were analyzed in terms of specific fuel consumption, and proper power transmission systems were suggested for various implements. The results of this study are summarized as follows: 1. Power requirement for each fixed-type implement of power-tiller varied from 1.5 ps to 11 ps according to its type and operating conditions, but generally in the range of 2.5 ps to 7 ps. 2. Each power tiller and implement were equipped with only one size of pully with few exeptions. With the present power transmission systems, the engines can't be utilized effectively in terms of fuel economy. The pulley size of engine or implement should be diversified to provide the optimum engine speed for different implements. 3. For a diesel eninge with the rated power output of 6 ps, the optimum engine speed to minimize specific fuel consumption was 2200 rpm for the power reguirement in the range of 6 ps or more, 1700 rpm in the range of 4 to 6 ps, and 1200 rpm in the range of 4 ps or less. 4. For a diesel engine with the rated power output of 8 ps, the optimum engine speed was 2200 rpm for the power requirement in the range of 7 ps or more, 1700 rpm in the range of 4.8 to 7 ps, and 1200 rpm in the range of 4.8 ps or less. 5. For a diesel engine with the rated power output of 10 ps, the optimum engine speed was 2200 rpm for the power requirement in the range of 8.4 ps or more, 1700 rpm in the range of 5.4 ps to 8.4 ps, and 1200 rpm in thr range of 5.4 ps or less. 6. Provided the existing implements are dirven by 8 ps diesel engines, the optimum size of engine pulley should be larger than 120mm for the works of requiring less than 4 ps and 90-110mm for the works requiring 4.5-6.5 ps in order to minimize fuel consumption.

  • PDF

The Study of Failure Mode Data Development and Feature Parameter's Reliability Verification Using LSTM Algorithm for 2-Stroke Low Speed Engine for Ship's Propulsion (선박 추진용 2행정 저속엔진의 고장모드 데이터 개발 및 LSTM 알고리즘을 활용한 특성인자 신뢰성 검증연구)

  • Jae-Cheul Park;Hyuk-Chan Kwon;Chul-Hwan Kim;Hwa-Sup Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.95-109
    • /
    • 2023
  • In the 4th industrial revolution, changes in the technological paradigm have had a direct impact on the maintenance system of ships. The 2-stroke low speed engine system integrates with the core equipment required for propulsive power. The Condition Based Management (CBM) is defined as a technology that predictive maintenance methods in existing calender-based or running time based maintenance systems by monitoring the condition of machinery and diagnosis/prognosis failures. In this study, we have established a framework for CBM technology development on our own, and are engaged in engineering-based failure analysis, data development and management, data feature analysis and pre-processing, and verified the reliability of failure mode DB using LSTM algorithms. We developed various simulated failure mode scenarios for 2-stroke low speed engine and researched to produce data on onshore basis test_beds. The analysis and pre-processing of normal and abnormal status data acquired through failure mode simulation experiment used various Exploratory Data Analysis (EDA) techniques to feature extract not only data on the performance and efficiency of 2-stroke low speed engine but also key feature data using multivariate statistical analysis. In addition, by developing an LSTM classification algorithm, we tried to verify the reliability of various failure mode data with time-series characteristics.

Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission

  • Choi, Seok Hwan;Kim, Hyoung Jin;Ahn, Sung Hyun;Hong, Sung Hwa;Chai, Min Jae;Kwon, Oh Eun;Kim, Soo Chul;Kim, Yong Joo;Choi, Chang Hyun;Kim, Hyun Soo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • Purpose: A simulator for the design and performance evaluation of a tractor with a hydro-mechanical transmission (HMT) was developed. Methods: The HMT consists of a hydro-static unit (HSU), a swash plate control system, and a planetary gear. It was modeled considering the input/output relationship of the torque and speed, and efficiency of HSU. Furthermore, a dynamic model of a tractor was developed considering the traction force, running resistance, and PTO (power take off) output power, and a tractor performance simulator was developed in the co-simulation environment of AMESim and MATLAB/Simulink. Results: The behaviors of the design parameters of the HMT tractor in the working and driving modes were investigated as follows; For the stepwise change of the drawbar load in the working mode, the tractor and engine speeds were maintained at the desired values by the engine torque and HSU stroke control. In the driving mode, the tractor followed the desired speed through the control of the engine torque and HSU stroke. In this case, the engine operated near the OOL (optimal operating line) for the minimum fuel consumption within the shift range of HMT. Conclusions: A simulator for the HMT tractor was developed. The simulations were conducted under two operation conditions. It was found that the tractor speed and the engine speed are maintained at the desired values through the control of the engine torque and the HSU stroke.

A Study on Combustion Process of Biodiesel Fuel using Swirl Groove Piston (Swirl Groove Piston에 의한 바이오 디젤연료의 연소과정에 관한 연구)

  • Bang, Joong-Cheol;Kim, Sung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The performance of a direct-injection type diesel engine often depends on the strength of swirl or squish, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the combustion in the cylinder was affected by the mixture formation process. In this paper, combustion process of biodiesel fuel was studied by employing the piston which has several grooves with inclined plane on the piston crown to generate swirl during the compression stroke in the cylinder in order to improve the atomization of high viscosity fuel such as biodiesel fuel and toroidal type piston generally used in high speed diesel engine. To take a photograph of flame, single cylinder, four stroke diesel engine was remodeled into two stroke visible engine and high speed video camera was used. The results obtained are summarized as follows; (1) In the case of toroidal piston, when biodiesel fuel was supplied to plunger type injection system which has very low injection pressure as compared with common-rail injection system, the flame propagation speed was slowed and the maximum combustion pressure became lower. These phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of swirl groove piston, early stage of combustion such as rapid ignition timing and flame propagation was activated by intensifying the air flow in the cylinder. (3) Combustion process of biodiesel fuel was improved by the reason mentioned in paragraph (2) above. Consequently, the swirl grooves would also function to improve the combustion of high viscosity fuel.

A Study on the Effects of Fuel Rail Pressure and Engine Speed on Gas Fuel System (연료레일 압력과 엔진 속도가 가스연료 시스템에 미치는 영향에 관한 연구)

  • Kwak, Youn-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.579-585
    • /
    • 2018
  • This study is to figure out the fuel injection characteristics according to the injection pressure and engine speed in the fuel supply system for gas fuel. The fuel rail pressure was from 1.5 to 6.0 bar by 1.5 bar increment and engine speed was set 1,000 ~ 6,000 RPM at interval of 1000 RPM. Considering the real engine operation, the injection pulse width was set 2.5ms, 5.0ms, and 13.0ms which correspond low, mid and high load condition respectively. In conclusion, in case of 100cc fuel rail, 4.5 bar of injection pressure showed best performance and the minimum required injection quantity 53cc which guarantees engine output can be obtained in each 1000~ 6000 rpm engine speed.

A study on the speed control system of medium - small size diesel engine by $\mu$-synthesis ($\mu$-synthesis 기법에 의한 중.소형 디젤기관의 속도 제어계에 관한 연구)

  • 양주호;변정환;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.82-87
    • /
    • 1997
  • This paper presents a method about the modeling of the medium - small diesel engine for the speed control and designs the robust speed control system by the $\mu$-synthesis, which has good performance, in spite of the existence of model uncertainities and the external disturbance. We confirmed the validity of the proposed modeling method and the designed control system by $\mu$-synthesis through the experimental responses.

  • PDF

Speed response to the load fluctuation in a four-cycle gasoline engine

  • Kubota, Yuzuru;Hayashi, Sigenobu;Kajitani, Syuichi;Sawa, Norihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.766-771
    • /
    • 1989
  • The authors tried to make experimentally clear the response of engine speed to stepwise increasing, decreasing or sinusoidally fluctuating load. Based on a simplified model devised from the standpoint of the control theory, analysis was carried out with digital computer and its results obtained coincide well with those of experiment, so that it could be confirmed that it is possible to simulate the speed response to variation of the load.

  • PDF

Sorghum Harvesting Using a Head-feeding Type Rice Combine

  • Jun, Hyeon Jong;Choi, Il Su;Kang, Tae Gyoung;Choi, Yong;Choi, Duck Kyu;Lee, Choung Keun;Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.296-302
    • /
    • 2018
  • Purpose: The aim of this study was to determine appropriate threshing and selection conditions for sorghum harvesting using a rice combine-harvester. Methods: Sorghum harvesting performance was tested using an actual rice combine. Through this test, the grain loss rate and the composition of crops according to the engine and fan speeds of the combine were investigated. Furthermore, the optimal threshing and selection conditions were determined by carrying out a harvest test based on the opening size factor of the concave in a test field. Results: The grain loss rate for the sorghum using a concave ($18{\times}18mm$) of the rice combine was the lowest at 0.1% at a chaffer angle of $40^{\circ}$, engine speed of 2000 rpm, and fan speed of 20 m/s, but the sorting sieve clogged frequently. Furthermore, as the engine speed and fan speed increased, the grain loss rate also increased. The sorghum harvesting test results of the combine according to the concave opening size showed that the grain loss rate was 0.5% at a driving speed of 0.5 m/s, with a concave opening diameter of 13 mm, a chaffer angle of $40^{\circ}$, a concave sieve oscillation frequency of 4.8 Hz, a fan speed of 20 m/s, and an engine speed of 2000 rpm. Conclusions: Findings showed that sorghum could be harvested using a head feeding rice combine.