• Title/Summary/Keyword: Engine speed

Search Result 1,993, Processing Time 0.03 seconds

Design of a High-Speed RFID Filtering Engine and Cache Based Improvement (고속 RFID 필터링 엔진의 설계와 캐쉬 기반 성능 향상)

  • Park Hyun-Sung;Kim Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.517-525
    • /
    • 2006
  • In this paper, we present a high-speed RFID data filtering engine designed to carry out filtering under the conditions of massive data and massive filters. We discovered that the high-speed RFID data filtering technique is very similar to the high-speed packet classification technique which is used in high-speed routers and firewall systems. Actually, our filtering engine is designed based on existing packet classification algorithms, Bit Parallelism and Aggregated Bit Vector(ABV). In addition, we also discovered that there are strong temporal relations and redundancy in the RFID data filtering operations. We incorporated two kinds of caches, tag and filter caches, to make use of this characteristic to improve the efficiency of the filtering engine. The performance of the proposed engine has been examined by implementing a prototype system and testing it. Compared to the basic sequential filter comparison approach, our engine shows much better performance, and it gets better as the number of filters increases.

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, YouIl;Hwang, KiYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. After two possible mission profiles were established to decide the engine requirements, design point analysis was performed with the values of design parameter which were obtained from similar class engines, references, etc. The results showed that specific net thrust and specific fuel consumption with turbine inlet temperature of 3,600 R are 2,599.4 ft/s and 1.483 lb/(lb*h) respectively at the flight condition of sea level, Mach 1.2. It was also found that major design parameters for determining maximum net thrust were turbine inlet temperature for low supersonic and transonic flight speed and compressor exit temperature for high supersonic flight speed from the results of performance analysis on the two possible mission profiles. In addition, simple turbojet engine with an axial compressor, a straight annular combustor, an one stage axial turbine and a fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost lightweight turbine engine.

A Study on the Emission Characteristics in 4 Stroke Large Propulsion Diesel Engine (4행정 대형 디젤엔진의 배기 배출특성에 관한 연구)

  • 김현규;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.38-45
    • /
    • 2001
  • Environmental protection on the ocean has been interested and nowadays the International maritime organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO technical code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

Fatigue Analysis of Crankshaft for Medium-speed Diesel Engine (중속 디젤엔진 크랭크축의 피로해석)

  • Son, Jung-Ho;Lee, Jong-Hwan;Kim, Won-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.549-553
    • /
    • 2007
  • Moving parts of the rotating and reciprocating mechanism are the most important components of the diesel engines and require very high reliability in their design. Especially the crankshaft, the key component of running gear (powertrain), is subject to complicated loadings such as bending, shear and torsion coming from firing pressure, inertia forces and torsional vibration of crankshaft system. Intrinsically they show different cyclic patterns of loading in both direction and magnitude, and thus ordinary approach of proportional loading is less valid to analyze the dynamic structural behavior of crankshaft. In this paper, new fatigue analysis method is introduced to analyze and design the crankshaft of a medium-speed diesel engine in order to consider the non-proportional multi-axial loads realistically as well as to present the general fatigue analysis approach for an engine crankshaft.

  • PDF

Certification of Noise in Medium Speed Diesel Engine Test Shop (중형 엔진 시운전장의 소음 원인 규명)

  • Cho, S.Y.;Oh, K.T.;Kim, H.W.;Ha, J.S.;Kim, K.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1693-1698
    • /
    • 2000
  • In operating test of medium speed diesel engine, the large noise over 110dBA would be occurred, and silencer should be needed to prevent the transmission of noise through exhaust duct. A near neighborhood of medium speed engine test shop, outbreak of low frequency noise was reported. From the result of noise measurement, it was found that the coupling of engine noise and air column between workshops was main cause of annoying low frequency noise. From this study, 3 ways of reformation methods were proposed; insertion of plenum chamber, placement of baffles, and alteration of direction of exhaust. As a result of these modification, low frequency noise was cancelled out.

  • PDF

Design of Stable Controller to Sudden A/C Disturbance (급격한 에어콘 외란에 안정한 제어기 설계)

  • 이영춘;권대규;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.106-112
    • /
    • 2000
  • The purpose of this paper is to study on the control of the engine idle speed under sudden A/C load which is one of the most severe disturbances on engines. Three types of the closed-loop controller are developed for the stable engine idle speed control. The input of the controller is an error of rpm. The output of the controller is an ISCV duty cycle. The anticipation delay is considered to deal with the delay time of the air mass in engine. The PID, Fuzzy and PID-type Fuzzy controllers with the anticipation delay have improved the engine idle speed condition more than current ECU map table under the A/C load.

  • PDF

Spark Ignition Engine Speed Control Using fuzzy Control Strategy (퍼지제어방식을 이용한 SI엔진 속도제어)

  • Shin, Dong-Mok;Kim, Eung-Seok;Kim, Moon-Cheol;Min, Jong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.672-674
    • /
    • 1997
  • In this paper, we study the idle speed control of the spark ignition engine. Engine idle speed control is a difficult problem because of troublesome characteristics such as severe process nonlinearities, variable time delays, time-varying dynamics and unobservable internal system states and disturbances. We investigate the intelligent control algorithms such as neural network controller and fuzzy controller for 4-cylinder 4-stroke engine.

  • PDF

Simulation of Secondary Motion of Piston Assemblies (피스톤 어셈블리의 2차 운동에 관한 시뮬레이션)

  • 오병근;조남효
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.231-243
    • /
    • 2000
  • This paper describes a simulation of secondary motion of piston assemblies using PISDYN by Ricardo. Motions of the piston, pin, rod and skirt are separately calculated, by integrating equations of motion for individual components and dynamic degrees of freedom. The effects of engine speed at full load and pin offsets on the piston assembly secondary motions, forces and friction were investigated in parametric study for 4-cylinder gasoline engine. Results show that lateral displacement and friction loss of the piston increase as a function of engine speed. The lateral motion of the piston is affected by the change in pin offset. The minimum friction loss for the condition of 4800rpm WOT occurs at a pin offset of 1.6mm.

  • PDF

Improving the performance of a Medium Speed Diesel Engine Using Miller Cycle (Miller 사이클을 이용한 중형 디젤 기관 성능 개선)

  • 김동훈;김기두;하지수;김호익;김주태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.248-255
    • /
    • 2002
  • Miller cycle was studied and analyzed by engine performance simulation to achieve very low fuel consumption and to meet the IMO NOx regulation on a medium speed diesel engine. Based on the performance simulation results the intake valve closing time for HYUNDAI HiMSEN 6H21/32 engine was set at 0deg.ABDC(After Bottom Dead Center). Also, the simulation results indicated that significant NOx reduction could be achieved with low reduction of fuel consumption. The performance simulation investigated the effect of compression ratio and turbocharger on fuel consumption and NOx concentration in combination with Miller cycle. The results indicated a significant reduction of fuel consumption with keeping NOx concentration. The results of performance simulation were compared with measured data to verify simulation results. The comparison showed the maximum error was 2.34% in exhaust temperature. Also, the experimental result showed that improvement in BSFC(Brake Specific Fuel Consumption) was 5.8g/kwh with keeping NOx level similar to simulation result.

Analysis of Power Requirement of Agricultural Tractor during Baler Operation (베일러 작업 시 트랙터 소요동력 분석)

  • Kim, Yong-Joo;Lee, Dae-Hyun;Chung, Sun-Ok;Park, Seung-Jae;Choi, Chang-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.243-251
    • /
    • 2011
  • Purpose of this study was to analyze power requirement of an agricultural tractor for baler operation. First, a power measurement system was developed and installed in a 75 kW agricultural tractor. Strain-gages with a telemetry system were used to measure torques of transmission and PTO input shafts. An engine tachometer was used to measure rotational speed of transmission and PTO input shafts. The measurement system also included pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to determine power requirements. Second, field experiments were conducted at two PTO speed levels, and proportion of utilization ratio of rated engine power and power consumption of major parts (transmission input shaft, PTO input shaft, main hydraulic pump, and auxiliary hydraulic pump) were analyzed. Results of usage proportion of engine power for PTO speed level 1 and 2 were 4.1 and 2.2%, 31.5 and 16.3%, 49.6 and 59.7%, 14.4 and 20.8%, and 0.4 and 1.0%, respectively, for ratio of measured engine power to rated engine power of less than 25%, 25 ~ 50%, 50 ~ 75%, 75 ~ 100%, and greater than 100%. The results showed that the usage proportion increased in the range with the ratio of power requirement to rated engine power of over than 50% when the PTO gear was shifted from P1 to P2. Averaged engine power requirement for baling operation, tying and discharging operation, and total operation were 43.3, 37.3, and 42.0 kW and 49.0, 37.0, and 47.4 kW, respectively, for PTO speed level 1 and 2. Paired t-test showed significant difference in power consumption of engine, transmission input shaft, and PTO input shaft for different PTO speed levels. Therefore, the power consumption of engine for baler operation increased when the PTO gear was shifted from P1 to P2. It was indicated that the power requirement of tractor was affected by the PTO rotational speed for baler operation.