• 제목/요약/키워드: Engine room

검색결과 358건 처리시간 0.032초

청력보호를 위한 선박 기관실 및 선실소음의 조사(I) (An Investigation of the Noise in Ship Engine-Room and Cabins for Hearing Protection (I))

  • 유영훈
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.97-103
    • /
    • 1999
  • As the noise of ship engine room is too loud, the engineer who works in a ship engine-room has the trouble of hearing. In this paper deals the investigation of the noise of ship engine room and cabins with the internationally allowable noise exposure level and noise exposure time. Recently, the problem of engine-room noise is more serious because of shipowner wants to make small number and larger size of cylinder. Therefore, engineers work in a ship engine-room for a long time have the trouble of hearing when they are exposed the high noise level. In this study, two kinds of vessels were used to investigate the noise of engine room, engine-control room, bridge, offices and cabins. As criteria of sound levels, A-weighted sound pressure level and octave band pressure level were used.

  • PDF

소형선박용 무인기관실 초기화재 진압시스템 개발 (Developing of an extinguishing system for a fire at an early stage in Unmanned Engine Room for small vessels)

  • 김성윤;김동석;김유택
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.333-334
    • /
    • 2006
  • Extinguishing a fire at an early stage is most important to prevent spreading of a fire in Unmanned Engine Room. The most proper fire extinguish system was analyzed after examining the Automatic spread Extinguish System, which is mostly installed in Unmanned Engine Room, reproduced in the condition of real Unmanned Engine Room.

  • PDF

차량 엔진룸에서의 냉각효율 향상에 관한 해석 (ANALYSIS OF THE ENHANCEMENT OF COOLING EFFICIENCY OF A VEHICLE IN THE ENGINE ROOM)

  • 이동렬
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.55-62
    • /
    • 2005
  • Flow and temperature fields of a mid-size vehicle engine room are examined numerically to analyze the enhancement of cooling efficiency of several different design cases in a front body shape. The wall temperatures of a radiator and an engine parte are utilized to predict the effects of engine cooling on the thermal environment and the cooling efficiency in an engine room. The analyzed results are the mass flow rate at the upper and lower inlets, in the radiator, and the condenser. It is shown that the shape of the front end, lay-out of the engine parts, and the presence of the undercover greatly influence the flow and temperature fields, and the enhancement of cooling efficiency in the engine room.

선박기관실의 소음 저감을 위한 차폐공명기의 개발에 관한 연구 (A Study on the Development of a Resonator to Reduce the Ship Engine Room Noise)

  • 유영훈
    • 동력기계공학회지
    • /
    • 제11권4호
    • /
    • pp.72-77
    • /
    • 2007
  • It is known that elimination of ship engine room noise is impossible thing, so the working environment in the engine room is getting worse because ships are recently built with huge engines to take higher sailing power. In the yacht and cruise yacht, the engine room noise is more serious because they have bigger engines relative to their hull sizes. The noise generated from the main engine makes the employee to hearing loss and the transmitted noise make the uncomfortable conditions in the cabins of ship. The noise generated by ship engine must be attenuate for the employee and passenger. In yacht and cruise yacht, the noise levels in cabines are the most important criterions to the value of commodities. In this study, the noise absorbtion barrier which have resonators is experimentally studied by the 1/3 octave band noise elimination rates(%).

  • PDF

엔진 거동을 고려한 DMU(Digital Mockup)에서의 다이나믹 간격 검증 (Verification and Validation of Dynamic Clearance in Digital Mockup Using Engine Movement Roll Data)

  • 김용석;장동영
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.56-61
    • /
    • 2010
  • This paper presents dynamic clearance verification considering engine movement for vehicle engine room package and validates through physical vehicle test. Traditionally, static clearance guide has been used for engine room package, but it's only 2-dimension criteria that results in requiring unnecessary space and it's not possible to conduct engine movement with real driving conditions. Thus, the dynamic DMU considers engine movement based on 28 load cases that are Roll Data analyzed by CAE for maximum engine movement and visualizes part-to-part dynamic clearance into virtual space. The dynamic DMU enables to develop compact engine room package without unnecessary space. The result of comparison between simulation and physical test has 0.892 correlation coefficient.

제트 펌프를 이용한 엔진 룸 냉각 시스템 (Engine room cooling system using jet pump)

  • 임정우;이상현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.162-167
    • /
    • 2000
  • Construction machinery includes an engine enclosure separated from a cooling system enclosure by a wall to reduce noise and advance cooling system performance. For this structure, however, the axial fan cannot be of benefit to the engine room, and so the temperature rise in the engine room makes several bad conditions. This paper proposes that hot air in engine room is evacuated tv secondary pipe using jet pump. This paper demonstrates the structure and the effect of jet pump and useful guideline on design of area, length, and shape of secondary pipe to maximize the effect of jet pump.

  • PDF

구동방식에 따른 승용차 엔진룸 화재조사 기법에 관한 사례 연구 (A Case Study on the Investigation of Vehicle Fire According to Drive Train)

  • 손정배;권현석;이정일;최돈묵
    • 한국화재조사학회논문지
    • /
    • 제11권1호
    • /
    • pp.83-88
    • /
    • 2008
  • 차량화재의 발화지점은 크게 엔진룸과 승객실로 볼 수 있다. 엔진룸에서 발생된 차량화재의 경우 방화벽이 엔진룸과 승객실 사이에 설치되어 있으므로 승객실로 전이는 약 10~15분 정도로 지연되는 것이 일반적이다. 엔진룸은 그 차량의 구동 방식에 따라 종치형과 횡치형으로 배열되는데 이들 엔진 배열에 따라 화염이 전이되는 과정이 각각 다르게 나타나고 좌우 대시 패널에 나타난 소손정도 또한 다르게 나타난다. 따라서 엔진룸에서 발생된 차량 화재 감식시 좌우 대시패널의 소손정도를 먼저 파악하는 것이 발화지점을 빠르게 찾는 방법인 것으로 사료된다.

  • PDF

열해현상 방지를 위한 버스 엔진룸 구조개선 (Reengineering of Bus Engine Room Structure for Preventing Thermal Damages)

  • 맹주성;윤준용;손한규
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.46-55
    • /
    • 2000
  • Four types of different flow inlet models were tested to improve the flow uniformity at the inlet of the radiator and to prevent thermal damages of auxiliary units from the hot air in the bus engine room. Measurements and numerical calculations were performed and their results were in a good agreement with each other. Simultaneously temperature measurements were carried out under the conditions of actual bus driving. As designing the new flow inlet at the partition board which seperates the engine space and radiator space, flow circulation can be achieved and fresh air comes into the engine room from the bottom. It was proved that new inlet makes the one air temperature cooling down in the engine room, the other uniformity improvement.

  • PDF

Main Engine의 Heavy Spare Parts가 설치된 Engine Room Opening Deck의 방진 설계 사례 (A Vibration Isolation Design for Engine Room Opening Deck around Heavy Spare Parts of the Main Engine)

  • 전용훈;임구섭;정태석
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2009년도 특별논문집
    • /
    • pp.93-96
    • /
    • 2009
  • Foundation structure for the main engine heavy spare parts in the engine room is susceptible to resonance problem due to outfitting weight. In addition the deck floor has a large opening for the main engine installation and maintenance, which further weakens the foundation structure. To reinforce the weak structure, two types of approaches have been used; 1) insert an H-pillar below or above the floor and 2) increase the stiffener size. In this paper, the H-pillar approach is used to solve the vibration problem of the foundation structure in the engine room opening area. A commercial program is used to analyze the vibration problem ad to find the location and the size of the H-pillar. Modal test at the quay and on-board vibration measurement during the sea trial have confirmed the validity of inserting an H-pillar below the floor.

  • PDF

차량 엔진룸 냉각용 후드 개발을 위한 수치해석 (Numerical analysis for development of vehicle engine room cooling hood)

  • 이석영
    • 에너지공학
    • /
    • 제27권4호
    • /
    • pp.92-97
    • /
    • 2018
  • 본 연구는 자동차 엔진룸 내부에서 엔진과 연계된 부품의 냉각효과를 높이기 위해 후드 개발을 위한 수치해석을 다루고 있다. 급격한 온도편차에서 유발되는 엔진룸내 부품 온도를 저감시키면 부품에 대한 내구성 저하를 최소화 할 수 있다. 따라서, 본 연구에서는 차량 엔진룸 주요 부품 중에서도 온도제어가 비교적 용이한 발전기, 배터리, ECU 및 파워스틸 오일 등 4가지 부품을 목표로 엔진룸 냉각용 후드 개발을 위한 수치해석을 수행하였다. 그리고 수치해석을 검증하기 위하여 수치해석에서 가정하였던 동일한 조건으로 실험을 수행하여 비교하였다.