• Title/Summary/Keyword: Engine oil

Search Result 870, Processing Time 0.023 seconds

Characteristics of Combustion and Emission for Synthetic Natural Gas in CNG Engine (CNG엔진에서 합성가스 연료의 연소 및 배기 특성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.8-14
    • /
    • 2015
  • Synthetic natural gas(SNG), acquired from coal, is regarded as an alternative to natural gas since a rise in natural gas due to high oil price can be coped with it. In the present study, 11-liter heavy duty compressed natural gas(CNG) engine was employed in order to examine the combustion and emission characteristics of SNG. The simulated SNG, made up 90.95% of methane, 6.05% propane and 3% hydrogen was used in the experiment. Power output, thermal efficiency, combustion stability and emission characteristics were compared to those with CNG at the same engine operating conditions. Knocking phenomenon was also analyzed at 1260 rpm, full load condition. Combustion with SNG was more stable than CNG. Nitrogen oxides emissions increased while Carbon dioxides emissions decreased. Anti-knocking characteristics were improved with SNG.

Characteristics of hazardous oil & liquid fuel waste discharged from various industries (폐유 및 액상연료 공정 폐기물에서 무기물질류의 함량특성)

  • Shin, Sun-Kyoung;Jeong, Seong-Kyeong;Kim, Woo-Il;Jeon, Tae-Wan;Kang, Young-Yeul;Yeon, Jin-Mo;Cho, Yoon-A;Kim, Min-Sun
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.276-286
    • /
    • 2013
  • This study was performed to investigate the contents characteristics of hazardous oil wastes and wastes of liquid fuels from different industrial process. In order to establish a hazardous waste list, samples of various industrial discharge have been analyzed for 16 non-regulated inorganic hazardous substances (i.e., Cu, Pb, Cd, CN, Hg, As, T-Cr, $Cr^{6+}$, Sb, Ni, F, V, Ba, Zn, Be, Se). In more detail, hazardous waste samples including waste hydraulic oils, waste engine, gear and lubricating oils, waste insulating and heat transmission oils, bilge oils, oil/water separator contents processing were collected from 37 workplaces and analyzed. We observed that the most of the inorganic substances exceeded the proposed criteria in many samples. Especially the concentration of Sb in heat transmission oil, bilge oil and gear & lubricating oils were ranged from 6 to 419 mg/kg whereas the proposed criteria is 50 mg/kg. The assessment result of hazardous waste in Korea according to the EWC showed that the out of 24 processes, 16 belongs to absolute entry and 8 belongs to mirror entry. In conclusion, we expect the outcome of this study to align the classification system of hazardous waste management in South Korea with international legislations, and consequently contribute to reduce environmental pollution as well as health risks by toxic wastes.

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

Optimum design of propulsion shafting system considering characteristics of a viscous damper applied with high-viscosity silicon oil (고점도 실리콘오일 적용 점성댐퍼 동특성을 고려한 추진축계 최적 설계)

  • Kim, Yang-Gon;Cho, Kwon-Hae;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.202-208
    • /
    • 2017
  • The recently developed marine engines for propulsion of ships have higher torsional exciting force than previous engines to improve the propulsion efficiency and to reduce specific fuel oil consumption. As a result, a viscous damper or viscous-spring damper is installed in front of marine engine to control the torsional vibration. In the case of viscous damper, it is supposed that there is no elastic connection in the silicon oil, which is filled between the damper housing and inertia ring. However, In reality, the silicon oil with high viscosity possesses torsional stiffness and has non-linear dynamic characteristics according to the operating temperature and frequency of the viscous damper. In this study, the damping characteristics of a viscous damper used to control the torsional vibration of the shafting system have been reviewed and the characteristics of torsional vibration of the shafting system equipped with a corresponding viscous damper have been examined. In addition, it is examined how to interpret the theoretically optimal dynamic characteristics of a viscous damper for this purpose, and the optimum design for the propulsion shafting system has been suggested considering the operating temperature and aging. when the torsional vibration of the shafting system is controlled by a viscous damper filled with highly viscous silicon oil.

Basic Study of Spray-Behavior Characteristics of Emulsified Fuel (에멀젼연료의 분무거동특성에 관한 기초연구)

  • Yeom, Jeong Kuk;Yoon, Jeong Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.763-771
    • /
    • 2014
  • As a preliminary study on the spray behavior characteristics of emulsified fuel, the fuel properties (viscosity, surface tension, and density) and evaporation characteristics of a fuel droplet were investigated. The emulsified fuel was made by mixing diesel and $H_2O_2$. In addition, the macroscopic spray behavior characteristics such as the spray penetrations and spray angles of the emulsified and diesel fuels were compared. The stirring condition of the emulsified fuel was a 9:1 mixture of the diesel fuel and the surfactant span 80. The mixing ratios for the hydrogen peroxide were set at EF2, EF12, EF22, EF32, EF42, EF52, EF62, EF72, EF82, and EF92. The injection pressures were set at 400, 600, 800, and 1000 bar. We found that as the mixing ratio of the hydrogen peroxide was increased from EF2 to EF52, the viscosity of the emulsified fuel increased. However, afterward, the viscosity of the emulsified fuel gradually decreased and approached the viscosity value of the diesel fuel. Therefore, generally oil-in-water emulsions were used for the hydrogen peroxide mixing ratios up to 52 (EF52), and water-in-oil emulsions were used for the hydrogen peroxide mixing ratios above 52. Finally, the spray behavior characteristics (spray penetration and spray angle) of the emulsified fuel were found to be almost independent of the mixing ratio.

A Study on the Design of a New Rotor in Internal Pumps (내부 펌프의 새로운 로버 설계에 관한 연구)

  • Chang, Young-June;Kim, Jae-Hun;Han, Seung-Moo;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.100-107
    • /
    • 2007
  • A internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobes with circular shape, while the inner rotor profile is determined as conjugate to the other. The topic of this paper is the design of a new rotor, which is based on specific performance as different types depending on the shape of the lobe of the outer rotor. First, the design of internal lobe pumps with circular, elliptical, and their combined lobe profiles is considered. The latter is a new type of lobe profile with special shape whose curvature follows a definite function. Then we introduce the performance indexes used for the comparison. Some of these indexes, such as flow rate and flow rate irregularity, are commonly used for the comparison, while specific slipping is particularly suitable in this case. It is possible to notice that the circular and elliptical type is comparable to the circular one or the elliptical one in terms of flow rate irregularity, but has improved performance in terms of specific slipping. Results obtained from the analysis enable the designer and manufacturer of oil pump to be more efficient in this field.

Study for Examples of Fire Including Friction with Automotive Clutch, Manual Transmission and Tire System (자동차 클러치, 수동변속기, 타이어 시스템의 마찰에 관련된 화재사례 연구)

  • Lee, Il Kwon;Moon, Hak Hoon;Kim, Jin Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.49-53
    • /
    • 2015
  • The purpose of this paper is to study and analyze the failure examples for fire by friction on clutch, manual transmission and tire system in a car. In the first example, the driver took the pedal with foot to act the clutch. But the clutch disk did not return from flywheel by leakage of clutch hydraulic line. The heat was produced between clutch disk and flywheel by surface contacting. As a result, it was produced the fire by oil sludge sticked with transmission. In the second example, the transmission system was operated to transfer power of engine by contacting with gear and gear. But, as if the oil of transmission was caused the oil insufficiency because of leaking by crack of transmission case, it found the fact that was produced the fire by deposit material on transmission case. In the third example, when the car's driver continuously pushed an accelerator pedal for escaping from dry pit, the tire took the heat by the friction force between tire and surface of road. As a result, it became the direct cause for the fire. Therefore the driver must manage not to produce the fire with friction parts by heating during running.

Wear Analysis of Journal Bearings in a Misaligned Shaft During Motoring Start-up and Coast-down Cycles - Part I: Study on the Change in Oil Film Thickness at Potential Wear Regions (모터링 시동 및 시동정지 사이클에서 경사진 축을 갖는 저어널 베어링의 마모 해석 - Part I: 마모발생 가능영역에서의 유막 변화 연구)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.153-167
    • /
    • 2017
  • The aim of this study is to find the change in trend in the eccentricities of two journal bearings supporting the crankshaft of a single cylinder engine and the degree of misalignment of the shaft. We analyze the change in oil film thickness considering the wear scar under mixed-elasto-hydrodynamic lubrication regime at potential wear regions. For this, we first calculate the central eccentricities of the two journal bearings by using the mobility method. Then we calculate the outer end eccentricity by using the geometry of the bearings. Further, the tilting angle and degree of misalignment of the shaft are calculated by using the eccentricities of the two bearings. We show that the eccentricity of bearing #1, on which higher load is applied, increases at the beginning of the start-up cycle and during the coast-down cycle. However, the eccentricity of bearing #2, on which lower load is applied, decreases at the beginning of the start-up cycle and increases during the coast-down cycle. From the results of the analysis of oil film thickness, we show that the mixed-elasto-hydrodynamic lubrication regime for a misaligned shaft is at the initial stages of the start-up cycle for both bearing #1 and #2 and at the final stage of the coast-down cycle for only bearing #1.

Development of an Automated Integrated Design System for Gerotor Pumps with Multiple Profiles(Ellipse and Involute) (타원.인벌루트 조합 형상을 갖는 지로터 펌프의 통합적 설계 자동화 시스템 개발)

  • Moon, Hyun-Ki;Jung, Sung-Yuen;Bae, Jun-Ho;Chang, Young-June;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.67-77
    • /
    • 2010
  • An internal lobe pump is suitable for oil hydraulics of machine tools, automotive engines, compressors, constructions and other various applications. In particular, the pump is an essential machine element of an automotive engine to feed lubricant oil. The subject of this paper is the theoretical analysis of internal lobe pump whose the main components are the rotors: usually the outer one is characterized by lobe with elliptical and involute shapes, while the inner rotor profile is determined as conjugate to the other. And the integrated design system which is composed of three main modules has been developed through AutoLISP under AutoCAD circumstance plus CFD-ACE+. It generates new lobe profile and calculates automatically the flow rate and flow rate irregularity according to the lobe profile generated. CFD simulation results show trends similar to those carried out in experiments, and a quantitative comparison is presented. Results obtained from the automotive integrated design system enable the designer and manufacturer of oil pump to be more efficient in this field.

Surface Roughness Effects of a Valve Stem on the Leakage Characteristics in LPG Automotive (LPG자동차에서 밸브스템 표면거칠기가 누유특성에 미치는 영향에 관한 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • This paper provides the effects on the leakage characteristics of the surface roughness of a valve stem in LPG automotive. The valve stem seal is to stop an oil leakage through a sealing gap between a valve stem and a valve stem seal. The sealing performance of two components is related to a leak safety and a long life of a valve stem and a valve stem seal. The experimental results show that the optimal surface roughness of a valve stem is to recommend as $0.4{\sim}0.5{\mu}m$ in a centerline average roughness, Ra and a uniformly distributed profile of the roughness. Basically the smooth surface and uniform profiles of the roughness may reduce an oil leakage between a valve stem and a valve stem seal.

  • PDF