• 제목/요약/키워드: Engine excitation torque

검색결과 17건 처리시간 0.021초

차량 동력 전달계의 비틀림 가진력 해석 (Analysis of Torsional Excitation Force of the Vehicle Driveline)

  • 김병삼;장일도;문상돈
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1021-1027
    • /
    • 2006
  • 엔진의 토크 변동과 추진축의 각속도 변화는 차량 동력 전달계의 주요 가진원이다. 본 논문에는 이들 가진원의 발생 기구에 대하여 논하였다. 이 시스템의 등가모델은 가진원과 유사하게 구성되었고, ARLA Simul v 6.7과 ARLA-Simstat v 2.3을 이용하여 컴퓨터 시뮬레이션을 수행하였다. 컴퓨터 시뮬레이션의 결과는 동력 전달계의 비틀림 가진원의 특성을 보였다. 엔진과 추진축 시스템에 대한 실험 장치는 차량의 부품으로 구성되었다. 플라이휠의 토크 변동과 추진축의 각속도는 실험 장치로 부터 측정하였다. 실험결과는 시뮬레이션 결과와 비교하였고, 이론적 결과와 일치하였다.

  • PDF

엔진과 추진축의 비틀림 가진력에 관한 해석적 연구 (An Analytical Study on Torsional Excitation Force of an Engine and Propeller Shaft)

  • 김병삼;장일도;이봉구;문상돈
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.1-7
    • /
    • 2007
  • Torque fluctuation of an engine and angular velocity variation of a propeller shaft are the main excitation sources in a vehicle driveline. This paper presents the mechanism of these excitation sources. An equivalent model of the engine system and propeller shaft system is constructed to simulate the excitation phenomena. The analytical model contains the geometrical and dynamic mechanism. Combustion pressure of the cylinder is measured from dynamometer. The computer simulation is carried out by commercial program package. Results of the simulations show the characteristics of the torsional excitation source of the driveline.

Excitation Response Estimation of Polar Class Vessel Propulsion Shafting System

  • Barro, Ronald D.;Lee, Don-Chool
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.463-468
    • /
    • 2011
  • The prospect of Arctic trade transportation opening on a year-round basis creates a vast opportunity of exploring untapped resources and shortened navigational routes. However, the environment's remoteness and lack of technical experiences remains a big challenge for the maritime industry. With this, engine designers and makers are continually investigating, specifically optimizing propulsion shafting system design, to meet the environmental and technical challenges of the region. Further, classification societies recognize the need to upgrade the Unified Rules concerning elements to meet current Polar requirements. Hence in this paper, excitation torque calculation on Polar class vessels propulsion shafting system will be reviewed. The propeller - ice interaction load effect, which is a main consideration of excitation source of Polar Class propulsion shafting system, on shaft design calculation will be analyzed.

  • PDF

차동 기어의 진동 저감을 위한 동력 전달계 진동 해석 (Vibrational analysis of driveline for reducing differential gear vibration)

  • 최은호
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.96-102
    • /
    • 1997
  • Eigenvalue analysis of vibration mode and an analysis by frequency response among the methods of predicting gear noise are related with transmitting sound of vibration. In this study we intended to reduce the vibration noise of differential gear by reducing torque fluctuation of drive pinion shaft which causes vibration noise of differential gear in rear wheel drive vehicles. For this we developed multi-degree of freedom analysis model in which mass moment of inertia and torsional spring combined and we examined the influence of torsional vibration of driveline elements by performing forced vibration analysis of engine excitation torque. We studied the methods for reducing torsional vibration of driveline according to the design factor of propeller shaft and examined the effects reducing vibration in differential gear by applying flexible coupling.

  • PDF

차량 동력 전달계의 비틀림 가진원에 관한 실험적 연구 (An Experimental Study on the Torsional Excitation Source of the Vehicle Driveline)

  • 장일도;김병삼
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.865-870
    • /
    • 2005
  • Torque fluctuation of the engine and angular velocity variation of propeller shaft is the main excitation source for torsional vibration in the vehicle driveline. Experimental model for engine system is constructed with 4 cylinder 4 cycle diesel engine including Motor-Propeller Shaft-Axle-Wheel system. The angular velocity is measured by magnetic pickup and FV converter at the engine flywheel and propeller shaft. This paper presents the theoretical mechanism of these excitation sources and it is identified by the experimental methods.

건설기계 엔진 시스템의 가진력 예측 모델 개발 (A Study of the excitation force of an engine system for construction equipment)

  • 김우형;김성재;김인동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.654-657
    • /
    • 2014
  • In this paper, we study the analytical method to predict the excitation forces for the engine system. The engine system on the construction equipment is one of the important power sources, and the characteristics of the engine decide the performance of noise and vibration for the equipment. We predict the excitation forces using the geometrical data of the crank system and the combustion pressure in the cylinder. The excited forces are represented by the torque fluctuation above the center of the crank shaft.

  • PDF

차량주행시 동력전달계의 강제진동 해석 (Computer Simulation of Powertrain Forced Torsional Vibration)

  • 최은오;안병민;홍동표
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.853-860
    • /
    • 1997
  • For this study, the multi-degree of freedom analysis model of torsional vibration was developed. This model is combined with mass moment of inertia and torsional spring in two wheel drive and four wheel drive vehicle. We compared and analyzed torsional vibration characteristics by natural frequencies and mode shapes which are obtained by free vibration analysis of this model. And we studied torsional vibration contribution of driveline elements by performing the forced vibration analysis of engine excitation torque. The validity of this model is demonstrated by the field test. The reduction effect of the torsional vibration along the driveline design factor is presented by the analytical results.

  • PDF

디젤기관 추진 축계의 연성진동에 관한 연구 (제3보 : 프로펠러 기진에 의한 진동과 그 대책) (A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (3rd Report : Vibration by Propeller Exciting and its Countermeasure))

  • 전효중;이돈출;김의간;김정렬
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.173-179
    • /
    • 2001
  • The torsional or axial critical vibration of the order coinciding with the number of propeller blades is simultaneously excited by the harmonic tangential or radial forces acting on the crank shaft and by the harmonic of the same order from the propeller. The exciting torque of propeller is relatively small comparing with that of crank side, but the exciting force of propeller rather larger than that of crank shaft. With this situation, the exciting force of propeller cannot neglect if the axial vibration of propulsion shafting is calculated. With the propeller in its optimal angular position, i.e. its excitation effect opposed to that of the engine, the stresses at the critical revolution will largely cancel themselves out. In this paper, a method of optimizing the angular propeller position with regard to torsional and axial vibration is studied. The optimal relative angle is determined theoretically by calculation results of coupled torsional-axial vibration.

  • PDF

클러치 댐퍼용 원심 진자 흡진기의 비틀림 진동 절연 성능 평가 (Torsional Vibration Isolation Performance Evaluation of Centrifugal Pendulum Absorbers for Clutch Dampers)

  • 송성영;신순철;김기우
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.436-442
    • /
    • 2016
  • This paper presents the torsional vibration isolation performance evaluation of a centrifugal pendulum absorbers (CPAs) that has a continuously varying resonance frequencies proportional to engine firing (excitation) order. CPAs are commonly used to suppress torsional vibrations in rotating machinery and internal combustion engines. In this study, they are employed on the current spring type torsional damper inside a torque converter of automotive vehicle. To evaluate the effectiveness of designed resonance tuning order, the torsional vibration transmissibility based on torque measurements with respect to different engine firing orders is experimentally measured with a lower-inertia dynamometer. The torsional vibration transmissibility with respect to different frequencies with engine order of 2 is also evaluated. It has been demonstrated that the significant vibration reduction over operational frequency range of interest can be achieved by attaching simple pendulums. Future research direction includes the study on theoretical analysis, improved design of pendulum etc.

원형 고무 세그먼트를 갖는 탄성커플링의 동특성과 적응성 (Dynamic Characteristics and Adaptation of Elastic Coupling with Rubber Type Circular Segments)

  • 이돈출;로날드 디. 바로;김진경;남택근;유정대
    • 한국소음진동공학회논문집
    • /
    • 제21권4호
    • /
    • pp.346-351
    • /
    • 2011
  • Medium and high speed marine diesel engines with reduction gear have been widely used as prime mover in small car ferries and fishing vessels. The elastic coupling should be installed and complemented the propulsion shafting system to isolate the vibratory torque between engine and reduction gear. In this paper, the dynamic characteristics of elastic coupling with rubber type circular segments is confirmed by theoretical analysis using the FEM and the hydraulic excitation test at shop. Further adaptation was investigated with the torsional vibration test at diesel engine factory shop.