• Title/Summary/Keyword: Engine cooling

Search Result 609, Processing Time 0.021 seconds

Evaluation by Rocket Combustor of C/C Composite Cooled Structure for Combined-cycle Engine

  • Takegoshi, Masao;Ono, Fumiei;Ueda, Shuichi;Saito, Toshihito;Hayasaka, Osamu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.804-809
    • /
    • 2008
  • In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2900 K and heat flux to the combustion chamber wall was about 9 $MW/m^2$. No thermal damage was observed on the stainless steel tubes which were in contact with the C/C composite materials. Results of the heating test showed that such a metallic-tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure(also as a heat exchanger), as well as indicating the possibility of reducing the amount of the coolant even if the thermal load to the engine is high. Thus, application of the metallic-tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined cycle engine is expected.

  • PDF

Numerical Simulation on Flows inside an Engine Room with Radiator and Cooling Fan Models (방열기 및 냉각팬을 고려한 엔진룸 내부유동 해석)

  • Kim S. L.;Lee S. C.;Lee K. H.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.70-75
    • /
    • 1995
  • Recently, for the thermal system design in an engine room, the importance of the numerical analysis on the heat and fluid flow has been recognized. In the present study, the flow inside an engine room with complex geometry was analysed by use of TURBO-3D program being developed in KIST. Radiator and Cooling fan were simulated by porous media and momentum sources, and the result shows a good agreement with our expectation.

  • PDF

A Numerical Study on Cooling Characteristics of a Rocket-engine-based Incinerator Devised for High Burning Rate of Solid Particles (고체입자의 높은 연소율을 갖기 위해 고안된 로켓 엔진 기반 소각로의 냉각 해석)

  • Son, Jinwoo;Sohn, Chae Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • Cooling characteristics are investigated numerically in the chamber for high-performance burnout of wastes with solid phase. Before the combustion chamber is manufactured, combustion analysis is performed for evaluation of burning rate and cooling performance. A water cooling method is applied and its feasibility for cooling is examined depending on coolant flow rate. Another method of complex cooling is adopted by combining air film cooling with water cooling, leading to improved cooling performance.

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling. (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (I))

  • Park, Kye-Seung;Kim, Yoo;Kim, Tae-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.54-61
    • /
    • 2003
  • This paper describes a general design procedure of regenerative cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that soot from combustion products have strong influence on the cooling characteristics of LRE.

NUMERICAL ANALYSIS ON INTERNAL FLOW OF OIL JET COOLING THE PISTON (피스톤 냉각용 Oil jet 유동해석)

  • Kwon J.H.;Jung H.Y.;Lee J.H.;Choi Y.H.;Lee Y.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.219-222
    • /
    • 2005
  • Recently, the interest of the engine capacity and environment of the atmosphere is increasing, so the researches for the engine capacity have been conducted for a long time. But the internal environment of an automotive engine is very severe. A piston is exposed to combustion gas of over $2000^{\circ}C$ and strong friction is occurred by high speed motion in the cylinder. The fraction between piston and wall of the cylinder causes the increase of temperature in the engine. The temperature of the engine has an effect on the engine capacity. If the temperature is high, the capacity of the engine is low. So we have to maintain the optimum temperature. To maintain the optimum temperature, the enough flow rate of the engine oil is needed. The oil jet is used to control the flow rate of the engine oil and supply the engine oil to the piston and cylinder. The purpose of this study is to check the mass flow rate of the engine oil and the characteristics of internal flow of the oil jet. Flow pattern of the engine oil is very important because it concludes the loss in the oil jet. This study is the previous research about the oil jet and we will consider the movement of the ball check valve to get more accuracy result.

  • PDF

Characteristics of Combustion by Varying Different Coolant-temperature in a Hydrogen Engine for HALE UAV (고고도 무인기용 수소연료엔진의 냉각수 온도변화에 따른 연소 특성)

  • Yi, Ui-Hyung;Jang, Hyeong-Jun;Park, Cheol-Woong;Kim, Yong-Rae;Choi, Young
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.59-66
    • /
    • 2018
  • Using hydrogen fuel is expected to be suitable as a reciprocating internal combustion engine with heightened interest in HALE(High Altitude Long Endurance) UAV(Unmanned Aerial Vehicle). Hydrogen is hightest energy density per mass so it can continue to charge for long periods of time and have positive part of the environmental effects. However, it is estimated that there is less research on hydrogen fuel engine currently applied, and many studies need to be done. Depending on the operation, there are factors that result in supercooling due to reduced radiation or reduce cooling performance due to low air density. Therefore, the experiment was to change the temperature of the cooling water and investigate the effect on engine combustions. The limitation of the stable operation range due to backfire is dominated by the excess air ratio rather than the effect of the cooling water temperature change. When the cooling water temperature increases, the volumetric efficiency decreases and the torque decreases. As the cooling water temperature decreases, the heat loss was increased and consequently the thermal efficiency was decreased.

The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine (직접 분사식 디젤엔진에서 EGR이 배기배출물에 미치는 영향에 관한 연구)

  • Jang, S.H.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments-were performed at various engine loads while the EGR rates were set from 0% to 20%. The emissions trade-off and combustion of diesel engine are investigated. Hot and cooled EGR are achieved without cooling and with cooling respectively. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions. Also, the reduction rates of NOx emissions for hot and cooled EGR are similar at load 20%.

  • PDF

A Study of the Experiment and the Calculation Method on the Coolant Flow Rate of Engine and Vehicle Cooling System (엔진 및 차량냉각계의 냉각수유량 측정실험 및 계산방법에 관한 연구)

  • 오창석;유택용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • In this study, the prediction method of coolant flow rates has been developed and applied to an engine and vehicle cooling system. The flow rate passing through each component of the system is very important parameter to evaluate the heat transfer process form the combustion gas to the coolant and the heat rejection process form the radiator /heater to the ambient air. However, the present study reveals that the measurement using the flowmeter fails to give practical flow rates due to its additive resistance. In contrast, the present method which uses the parallel and serial relationship of flow resistance proved to be a good tool to predict the real flow rates. It can be also used to design the cooling system in the incipient stage of engine/vehicle development . The procedure was coded to the computer program so as to use it flexibly and, in the future, to expand it into an independent design tool of the whole cooling system including the heat release and rejection.

  • PDF

A Numerical Study on the Combustion Characteristics in a Liquid Rocket Engine with Film Cooling Effect (막냉각 효과를 고려한 액체로켓 엔진의 연소 특성에 관한 연구)

  • Byeon,Do-Yeong;Kim,Man-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.69-76
    • /
    • 2003
  • For stable combustion and safety of a structure of the propulsion system, a cooling system to the liquid rocket engine should be incorporated. In this study, Eulerian-Lagrangian scheme for two phase combustion, nongray radiation and soot formation effect, and film-wall interaction have been introduced to study the effect of film cooling. After briefly introducing the governing equation, combustion characteristics with change of wall temperature has been investigated by varying such parameters as fuel mass fraction for film cooling, diameter of the fuel droplet, overall mixture fraction of oxygen to fuel. Also, radiative heat flux is compared with the conductive one at the combustor wall.

Material Trends of Nozzle Extension for Liquid Rocket Engine (액체로켓엔진 노즐확장부 소재기술 동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.139-149
    • /
    • 2011
  • The combustion chamber and nozzle of a liquid rocket engine need thermal protection against the high temperature combustion gas. The nozzle extension of a high-altitude engine also has to be compatible with high temperature environment and several kinds of cooling methods including gas film cooling, ablative cooling and radiative cooling are used. Especially for an upper-stage nozzle extension having a large expansion ratio, the weight impact on the launcher performance is crucial and it necessitated the development of light-weight refractory material. The present survey on the nozzle extension materials employed in the liquid rocket engines of USA, Russia and European Union has revealed a trend that the heavier metals like stainless steels and titanium alloys are being substituted with light weight carbon fiber or ceramic matrix composite materials.

  • PDF