• Title/Summary/Keyword: Engine Simulation Program

Search Result 240, Processing Time 0.023 seconds

Development of the Condition Monitoring Test Cell Using the Micro Gas Turbine Engine (초소형 가스터빈을 이용한 상태감시 시험장치 개발)

  • Kho, Seong-Hee;Ki, Ja-Young;Koo, Young-Ju;Kong, Chang-Duk;Lee, Eun-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.345-349
    • /
    • 2009
  • This test cell is developed to the institutes or laboratories research and study gas turbine engine for academic purpose with this test data to provide the fundamentals of operational mechanism and structural configuration, and further to verify thermodynamic calculation The test cell is installed to monitor and compare real-time data with reference engine model performance simulation data. using by NI DAQ(Data acquisition)device and LabVIEW program based on 30lbf-micro turbojet engine.

  • PDF

The Effect of Turbine Blade Pitch on the Gas Turbine Engine Performance (터빈의 피치 간격이 가스터빈 엔진 성능에 미치는 영향)

  • Kim, Jae-Min;Kim, Kui-Soon;Choi, Jeong-Yeol;Jung, Yong-Wun;Hwang, In-Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.48-55
    • /
    • 2008
  • We have simulated the performance of a simple engine model with a gas turbine engine simulation program based on CFD. 2-dimensional Navier-Stokes code for the viscous flow was applied to simulate a compressor and a turbine, and the chemical equilibrium code with the lumped method was applied to simulate the combustor. Unsteady-flow phenomenon between rotor and stator of the compressor and the turbine was analyzed by steady mixing-plane method. In this way, the influence of the turbine blade pitch on the engine was investigated. It was shown that the compressor is operated at more higher pressure conditions as narrower the pitch distance of the turbine.

Architecture and Development Activities of the Full Engine Simulation Program (엔진 통합설계/해석 시스템의 구성과 개발동향)

  • Jin, Sang-Wook;Kim, Kui-Soon;Ahn, Iee-Ki;Yang, Soo-Seok;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.26-37
    • /
    • 2007
  • A virtual engine test based on "Numerical test cell" can extremely reduce the time and cost for the development of a hardware by coupling multidisciplinary analysis. This paper introduces the development activities of full engine simulation programs in U.S.A. and Europe, with the their related techniques(the engineering models, the simulation environment and high performance computing) based on the NPSS(Numerical Propulsion System Simulation). NASA Glenn research conte. leads the development efforts of NPSS by assembling the current codes and improving their Auctions. VIVACE(Value Improvement through a Virtual Aeronautical Collaborative Enterprise), a consortium of universities, research centers and companies in Europe, is developing the PROOSIS(PRopulsion Object Oriented Simulation Software). The capability for the domestic development is also estimated by surveying the current status.

A Dynamic Simulation and LQR Control for Performance Improvement of Small Gas Turbine Engine (소형 가스터빈엔진의 동적모사와 성능향상을 위한 LQR 제어)

  • 공창덕;기자영;김석균
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.24-32
    • /
    • 1997
  • A nonlinear dynamic simulation of a small gas turbine engine was performed by using DYNGEN program with various environmental conditions. It was observed that the effect of the bleed air flow rate changed to overall engine performance. The real time linear model which was a function of engine rotor speed was resulted to be close to nonlinear simulation results. For optimal LQR controller, it was considered only fuel flow rate or both fuel flow rate and bleed air rate as inputs. In the comparison of both results, the LQR controller with multi input had better performance than that with single input.

  • PDF

Effectiveness and Optimal Design of Vibration Isolating Rubber As an Engine Mount of Walking-Type Cultivators (보행형 관리기의 엔진 마운트로서 방진고무의 효과와 최적화 설계)

  • Park Y. J.;Lee Y. S.;Kim K. U.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.385-394
    • /
    • 2004
  • The objectives of this study were to investigate the effectiveness of rubber as an engine mount of walking-type cultivators and to determine its optimal spring constant and damping coefficient using a dynamic simulation of the engine mount system. Four different types of rubber mounts were tested to determine their spring constants and damping coefficients, and the best type was selected for the isolation of the engine vibrations transmitted to the handle. The total vibration levels transmitted to the handle when the rubber mounts weren't installed were 17.52 $m/s^2$. The total vibration levels transmitted to the handle when the rubber mounts were installed were 10.69 $m/s^2$ for Stripe 1, 11.33$m/s^2$ for Stripe 2, 10.92$m/s^2$ for Stripe 3 and 14.19$m/s^2$ for Hive, respectively, resulting in an average of $30\%$ reduction when compared with that without the engine mount. A dynamic model of the cultivator's engine-mount system and its simulation program were developed and verified. A method was proposed to determine the optimal spring constant and damping coefficient of the engine-mount system. It was found from the simulation that a spring constant of 4,100 kN/m and the largest damping coefficient were the most effective for the vibration isolation.

Development and Optimization of Engine Module for Hybrid System Simulator (하이브리드 시스템 시뮬레이터용 엔진 모듈 개발과 최적화에 관한 연구)

  • Jeon, Dae-Il;Gong, Ho-Jeong;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.14-22
    • /
    • 2010
  • Hybrid Electronic Vehicle (HEV) is one of the solutions of high oil price and environment problem. Recently, study of HEV is important for automobile industry. However HEV has a lot of components and there are many cases for assembling, it's impossible to test results from assembling by using real vehicles. To solve this problem, hybrid system simulator is required. The purpose of this study is to develop and optimize of engine module for hybrid system simulator. The commercial 1-D engine simulation program, WAVE is used to get the engine capacity and performance data and 1-D simulation model of base engine is compared with engine experiment results. Using the data, the engine module is developed based on the MATLAB Simulink. There are blocks of base engine, Single-CVVT engine and Dual-CVVT engine. The effect of acceleration and deceleration is applied to each engine block. In addition, the control and processing logics for CIS technology are developed. Finally the simulator operates FTP-72 mode test.

A Study on the Improvement of Volumetric Efficiency by the Resonators for the 4-Cylinder SI Engines. (공명기를 이용한 4기통 SI기관의 체적효율 향상에 관한 연구)

  • 이재순;이성두;윤건식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.232-242
    • /
    • 1996
  • In this study, the simulation program for the prediction of volumetric efficiency of the internal combustion engine by the resonator has been developed, when the resonator is mounted on the intake system of 4-cycle SI engines for the improvement of volumetric efficiency. The experimental work has also been carried out for the verification of the program, and it is found that the result of calculation by the simulation program fits qualitatively well with that of experiment. To get the optimal mounting position of resonator on the intake system, the influence of the variation of dimensions of resonator such as neck length, volume and neck diameter were examined by the numerical calculation of the program in advance and the results were compared with the experiments. It is found that the position which is departed 150cm from plenum chamber is better than any other positions, and the average amount of the increase of volumetric efficiency is about 2∼3%

  • PDF

Development of Control Algorithm and Real Time Numerical Simulation Program for Adaptive Cruise Control Vehicles (적응순향 제어(ACC) 차량의 제어 알고리즘 및 실시간 수치실험 프로그램 개발)

  • 원문철;강연준;강병배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.202-213
    • /
    • 1999
  • Adaptive Cruise Control (ACC) is one of key features on intelligent Transportation System(ITS). In ACC, the steering is done by a driver, but the engine throttle valve and the brake are controlled electronically. The relative velocity and distance from the preceeding vehicle are measured by radars or image processing units and relevant vehicular spacing is maintained in ACC control systems. In this study, vehicle longitudinal dynamics are modeled to simulate vehicle longitudinal maneuver and to design longtitudinal controllers for ACC vehicles. The control algorithm is designed based on the modeled vehicle longitudinal dynamics using a non-linear sliding mode control method. To verity the performance of the control algorithm, a real time numerical simulation program is developed on a Silicon Graphics workstation using C-language . A real time graphic program is alos develpe and integrated with the numerical simulation program.

  • PDF

A Study on the Calcuation of NO Formation in Cylinder for Diesel Engines (디젤기관의 연소실내 NO 생성농도 예측에 관한 연구)

  • 남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.543-551
    • /
    • 1999
  • Diesel engine is a major source of the air pollution. In general the concentrations of these pollu-tants in diesel engine exhaust differ from values calculated assuming chemical equibrium. Thus the detailed chemical mechanisms by which these pollutions form and the kinetic of these process-es are important in determining emission levels. In this study the computer program has been developed to calculate the required thermodynam-ic properties of combustion products(10 spacies) for both equilibrium and non-equilibrium in cylin-der for diesel engines. Nitric oxide emissions are calculated by using the extended Zeldovich Kinet-ic mechanism with a steady state assumption for the N concentration and equilibrium values used for H, O, $O_2$ and OH concentrations. By the results it is confirmed that developed simulations program with the NO prediction model is validated against residual mass fraction combustion index of Wiebe's functions pre-mixed com-bustion ration fuel injection timing.

  • PDF

Performance Analysis and Preliminary Design for the Turbo-Shaft Engine of the Multi-Purpose Helicopter (다목적 쌍발 헬리콥터용 터보축 엔진의 성능해석 및 기본설계)

  • Seo, Jeong-Won;Yun, Geon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 2002
  • In this study, the procedures for the preliminary design of the turbo-shaft engine for the light multi-purpose helicopter are established. The engine specifications are determined through the performance analysis on the on-design and off-design conditions by the use of simulation program. In addition, the effect of humidity on the engine performance is examined by considering the change of the gas properties and characteristic maps due to moisture contents. The calculation results show that the engine power is reduced by the existence of moisture in working fluid.