• Title/Summary/Keyword: Engine Safety

Search Result 655, Processing Time 0.024 seconds

Survey on the Regular Maintenance of Agricultural Machinery (농업기계 정기점검정비 실태조사)

  • Kang, J.W;Lee, W.Y.;Lee, S.B.;Lee, J.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.3 no.1
    • /
    • pp.142-157
    • /
    • 2001
  • This study was conducted to get the basic information for promoting farm machinery productivity by surveying the regular maintenance and repair status of major farm machinery such as power tiller, farm tractor, rice transplanter and combine harvester. The survey was carried out through 9 provinces including Cheju province by direct visiting farmers with prepared questionnaire. The results of this study can be summarized as follows : 1. The average farming carrier of the surveyed farmers was 25.3 years, and 21-30 years of farming carrier showed the highest portion as 40.7%. The average carrier of using farm machinery was 9.4 years, and that was 14.9 years for power tiller, 8.3 years for farm tractor, 9.0 years for rice transplanter, 7.9 years for combine harvester, 7.5 years for mini tiller, 9.7 years for power sprayer, and 8.2 years for binder etc. 2. The regular maintenance for farm machinery was conducted mainly at repair shop (49.5%) or dealer agency (12.0%) as 61.5%, and 34.9% of farmers conducted the regular maintenance by themselves at their house. 3. The reasons for not-fully recognizing operation manual and insufficient before-, during-, after-maintenance of farm machinery were insufficient time for them (45.8%), troublesome (22.9%), unknown maintenance method (16.3%), unknown the necessity for maintenance (12.4%), and others (2.6%) in order. 4. For the annual exchange of engine oil, 3.2 times is necessary but actually 1.7 times was exchanged for power tiller, 4.3 times is necessary but actually 1.9 times was exchanged for farm tractor, 2.7 times is necessary but actually 1.7 times was exchanged for rice transplanter, 2.2 times is necessary but actually 2.3 times was exchanged combine harvester. 5. For the annual cleanness or exchange of fuel filter, 3.2 times is necessary but actually 1.1 times was done for power tiller, 4.3 times is necessary but actually 1.6 times was done for farm tractor, 2.7 times is necessary but actually 1.7 times was done for rice transplanter, 1.9 times is necessary but actually 0.8 times was done for combine harvester. 6. For the annual cleanness or exchange of air filter, 3.2 times is necessary but actually 1.4 times was done for power tiller, 4.2 times is necessary but actually 2.4 times was done for farm tractor, 2.6 times is necessary but actually 1.6 times was done for rice transplanter, 3.9 times is necessary but actually 7.0 times was done for combine harvester. 7. For the experience of breakdown related to maintenance, 5.3% of farmers experienced breakdown due to the insufficient exchange of engine oil, 7.7% of farmers experienced breakdown due to the insufficient cleanness or exchange of fuel filter, and 2.9% of farmers experienced breakdown due to the insufficient cleanness or exchange of air filter. 8. Most farmers (76.1%) recognized the necessity for agricultural machinery training or education, and most farmers preferred about one week for the training period, simple or ease maintenance for the training level, agricultural technical center or agricultural machinery manufacturer for the training agency. 9. Complete recognition of operation manual and sufficient before-, during-, and after-maintenance for farm machinery can minimize the breakdown as well as conduct suitable period farming, enlarge the endurance, prevent the safety accidents, and promote productivity of farm machinery. Therefore, these can be accomplished by the thorough training or education for agricultural machinery.

Analysis and the Standardization Plan of the Terms Used by Seafarers on Small Vessel (소형선박 종사자 사용용어 실태 분석 및 표준화 방안)

  • Kang, Suk-Young;Ryu, Won;Bae, Chang-Won;Kim, Jong-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.867-873
    • /
    • 2019
  • As of August 2019, there were 3,823 vessels under 30 tons that could be included in the category of small vessels; these account for 42.5 % of the 9,001 registered vessels in Korea. The problem is that many small vessel seafarers face many problems such as an board communication disconnection, difficulties in communication in maritime license interviews, or education related to maritime training using a large number of nonstandard terms, which are derived from foreign languages; this is leading to a decline the job skills of small vessel seafarers. Therefore, in this study, we closely analyzed the terminology of small vessel seafarers and proposed a standardization plan. In the terminology analysis, the preliminary terms of the maritime license interview and the high-frequency terms of the small vessel educational textbook were identified and the corresponding nonstandard terms were examined. Based on a survey, an expert meeting was held and incorrect Japanese notation, English notation, and the standard language for key terms were presented to analyze which questionnaire was most familiar. The ratio of the use of standard words is relatively high in the case of nautical terms, however, the wrong Japanese notation is used more for engine terms; the analysis results by age and tonnage also generally use the Japanese notation and the use frequency of English notation was determined to be low. Based on this, short- and long-term plans for the use of standard words by small vessel seafarers were proposed, including the production of a standard language dictionary for terms used by these seafarers, a promotion of the importance of using standard terms, active education through educational institutions, and the systematic preparation and implementation of Korean-language education for foreign sailors.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.

A Study for Reliability Improvement of Belt Type Door System using FMECA (FMECA 적용을 통한 벨트식 도어시스템 신뢰성 향상에 관한 연구)

  • An, Cheon-Heon;Lee, Do-Sun;Son, Young-Jin;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.58-64
    • /
    • 2010
  • As a modem urban train is getting complex in terms of high-technology in its systems and components, the failure management should be performed with scientific and systematic technique. FMEA is a technique to analyze the failure trends of component parts and influences to the higher level system in order to discover the design incompleteness and potential defects, which is for improving reliability. Especially, FMECA (Failure Mode Effects, and Criticality Analysis) is used in case that the criticality that has an immense influence to the system is important. In case of urban train, in its design and manufacturing steps, FMEA is frequently used as an analysis technique to meet the safety objectives and eliminate potential hazards/failures since the concepts of reliability of train is introduced these days. Though, FMEA technique in the maintenances steps lacks in its investigation and applications yet. FMEA is also not applied to the trains operated by Seoul metro in the design and manufacture steps excepts the newest trains. In this paper, through analyzing the failures/maintenance data of the belt-type door systems used in trains operated in Seoul metro Line 1, which is accumulated in RIMS (Rolling-stock Information Maintenance System), FMEA procedures to the belt-type door engines are proposed. Especially, an effort is made, to approach the detailed FMECA procedures to the door magnet valve and switch and door engine devices which vastly influences the customer safety and satisfaction.

Effect of Transient Condition on Propeller Shaft Movement during Starboard Turning under Ballast Draught Condition for the 50,000 DWT Oil Tanker (50,000 DWT 유조선의 밸러스트 흘수에서 우현 전타시 과도상태가 프로펠러축 거동에 미치는 영향 연구)

  • Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.412-418
    • /
    • 2020
  • Generally, the propeller shaft that constitutes the ship shaft system has different patterns of behavior due to the ef ects of engine power, propeller load and eccentric thrust, which increases the risk of bearing failure by causing local load variations. To prevent this, different studies of the propulsion shaft system have been conducted focused the relative inclination angle and oil film retention between the shaft and the support bearing, mainly with respect to the Rules for the Classification of Steel Ships. However, in order to secure the stability of the propulsion shaft via a more detailed evaluation, it is necessary to consider dynamic conditions, including the transient state due to sudden change in the stern wakefield. In this context, a 50,000 DWT vessel was analyzed using the strain gauge method, and the effects of propeller shaft movement were analyzed on the starboard rudder turn which is a typical transient state during normal continuous rate(NCR) operation in ballast draught condition. Analysis results confirm that the changed propeller eccentric thrust acts as a force that temporarily pushes down the shaft to increase the local load of the stern tube bearing and negatively affects the stability of the shaft system.

Basic study of residual marine fuels quality (선박용 잔사유의 품질에 대한 기초연구)

  • Park, Hee-Woo;Chun, Kang-Woo;Kim, Jin-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.362-368
    • /
    • 2016
  • In the recent International Maritime Organization's (IMOs) Maritime Safety Committee's 93rd session, the International Chamber of Shipping and International Parcel Tankers Association addressed marine fuel oil quality problems: increasing diluents in marine fuel oil, ignition in engine rooms due to the low flash point of fuel oil, and marine fuel oils that can damage marine engines. To deal with these marine fuel oil quality problems, the International Maritime Organization secretariat appointed the worlds marine fuel oil monitoring institute and constituted a correspondence group to determine the fuel oil quality required by MARPOL Annex VI regulation 14.8 (sulfur content less than 0.5%). In this study, basic research that can help with responding to marine fuel quality issues and the IMO's work is conducted. In order to perform this basic research, the off-spec ratio related to the fuel oil quality standard (ISO 8217:2012), density distribution tendency, gross specific energy, and correlation between components in the fuel oil are analyzed through actual marine fuel oil (residual marine fuel) data from the Port of Singapore.

Applicability of the Hydrocyclone for Efficiency Improvements to Sea-water Cooling Systems (해수 냉각시스템 효율 향상을 위한 하이드로사이클론의 적용가능성)

  • Kim Bu-Gi;Han Won-Hui;Cho Dae-Hwan;Choi Min-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.109-115
    • /
    • 2005
  • Hydrocyclone has been widely used for the solid-liquid separation in many industrial sites because of its comparatively preferable applications that can be applied to wide-range particle sizes. If seawater with impurities flows through pumps or heat exchanger, it might cause an decrease in the efficiency of cooling system In this paper, we have suggested some methods of separating impurities from seawater in the cooling system by using a Hydrocyclone. The effects of design factors as solid concentration, cyclone inlet pressure, flow rate and diameter of underflow on the separating performance of the Hydrocyclone were investigated The results from this study are summarized as follows: 1) In proportion to the decrease of solid concentration, the efficiency of solid-liquid separation is improved. 2) According as the cyclone inlet pressure increases the efficiency of separation is improved. Conclusively, this research suggested that the Hydrocyclone will be used as a pre-treatment system of cooling water in machines, and eventually prevent unexpected accidents in engine systems.

  • PDF

High safety battery management system of DC power source for hybrid vessel (하이브리드 선박 직류전원용 고 안전 BMS)

  • Choi, Jung-Leyl;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.635-641
    • /
    • 2016
  • In order to drive a hybrid propulsion device which combines an engine and an electric propulsion unit, battery packs that contain dozens of unit cells consisting of a lithium-based battery are used to maintain the power source. Therefore, it is necessary to more strictly manage a number of battery cells at any given time. In order to manage battery cells, generally voltage, current, and temperature data under load condition are monitored from a personal computer. Other important elements required to analyze the condition of the battery are the internal resistances that are used to judge its state-of-health (SOH) and the open-circuit voltage (OCV) that is used to check the battery charging state. However, in principle, the internal resistances cannot be measured during operation because the parallel equivalent circuit is composed of internal loss resistances and capacitance. In most energy storage systems, battery management system (BMS) operations are carried out by using data such as voltage, current, and temperature. However, during operation, in the case of unexpected battery cell failure, the output voltage of the power supply can be changed and propulsion of the hybrid vehicle and vessel can be difficult. This paper covers the implementation of a high safety battery management system (HSBMS) that can estimate the OCV while the device is being driven. If a battery cell fails unexpectedly, a DC power supply with lithium iron phosphate can keep providing the load with a constant output voltage using the remainder of the batteries, and it is also possible to estimate the internal resistance.

A Study on CFD Analysis to Investigate the Effects of Different Feed Rate into the High Temperature H2SO4 Transferring Pump at Fixed Frequency

  • Choi, Jung-Sik;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.304-311
    • /
    • 2014
  • In this study, to apply hydrogen energy to ship engine and to generate effective hydrogen production, we investigated the effects of high temperature $H_2SO_4$ feed rate and cooling water rate to pump parts with fixed frequency needed to reciprocate motion and a simulation was conducted at each condition. In the fixed frequency and cooling water inlet flow rate of 0.5 Hz and 3.9 kg/s, we changed the high temperature $H_2SO_4$ flow rate to 47.46 kg/s (it is 105 % of 45.2 kg/s), 49.72 kg/s (110 %), and 51.98 kg/s (115 %). Also, at 0.5 Hz and 45.2 kg/s of frequency and high temperature $H_2SO_4$ flow, the thermal hydraulic analysis was performed at the condition of 95 % (3.705 kg/s), 90 % (3.51 kg/s), and 85 % (3.315 kg/s). In overall simulation cases, the physical properties of materials are more influential to the temperature increase in the pump part rather than the changes on the feed rate of high temperature $H_2SO_4$ and cooling water. A continuous operation of pump was also capable even if the excess feed of high temperature $H_2SO_4$ of about 15 % or the less feed of cooling water of about 15 % were performed, respectively. When the increasing feed of high temperature $H_2SO_4$ of up to 5 %, 10 %, and 15 % were compared with base flow (45.2 kg/s), the deviation of time period rose to a certain temperature and ranged from 0 to 4.5 s in the same position (same material). In case of cooling water, the deviation of time period rose to a certain temperature and ranged from 0 to 5.9 s according to the decreasing feed changes of cooling water at 5 %, 10 %, and 15 % compared to a base flow (3.9 kg/s). Finally, the additional researches related to the two different materials (Teflon and STS for Pitch and End-plate), which are concerned about the effects of temperature changes to the parts contacting different materials, are needed, and we have a plan to conduct a follow-up study.

A Study on the Evaluation of Cabin Thermal Environment and Marine Fuels for Fuel Saving in Summer According to the Improvement of Air Conditioning System - The Case of Training Ship SAENURI - (공조시스템 개선에 따른 하절기 선실 온열환경 평가 및 유류절감에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Han, Seung-Hun;Kim, Hong-Ryel
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.653-662
    • /
    • 2014
  • In this study, Mokpo national maritime university Training ship Centralizes Air Conditioning System was upgraded by installing onboard an Air-cooled Air conditioner. This resulted in the improvement of the performance and operation. This study compared refrigeration performance to former equipment and improving one. And through the actual measurement study about the cabin thermal environment, it will be used as basic data for marine air conditioning design and plan in the future. At same climate condition, when the Centralized Air Conditioning System and an improved air conditioning system operated, cabin temperature was at $24{\sim}28^{\circ}C$, humidity was 55~75 % as comfortable condition, Generator load measurement showed a saving of 48KW in the average load and 8 % in the full load factor. This also resulted in a saving of daily fuel oil consumption(FOC) at around 222 [${\ell}/day$] average. On the other hand, one cadet cabin(Cadet No.21) indicated a higher temperature due to heat transmission of engine room. It found us not to consider installing additional diffuser to reduce the heat transmission.