• Title/Summary/Keyword: Engine Room

Search Result 358, Processing Time 0.032 seconds

An Investigation of the Noise in Ship Engine-Room and Cabins for Hearing Protection (I) (청력보호를 위한 선박 기관실 및 선실소음의 조사(I))

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.97-103
    • /
    • 1999
  • As the noise of ship engine room is too loud, the engineer who works in a ship engine-room has the trouble of hearing. In this paper deals the investigation of the noise of ship engine room and cabins with the internationally allowable noise exposure level and noise exposure time. Recently, the problem of engine-room noise is more serious because of shipowner wants to make small number and larger size of cylinder. Therefore, engineers work in a ship engine-room for a long time have the trouble of hearing when they are exposed the high noise level. In this study, two kinds of vessels were used to investigate the noise of engine room, engine-control room, bridge, offices and cabins. As criteria of sound levels, A-weighted sound pressure level and octave band pressure level were used.

  • PDF

Developing of an extinguishing system for a fire at an early stage in Unmanned Engine Room for small vessels (소형선박용 무인기관실 초기화재 진압시스템 개발)

  • Kim, Sung-Yoon;Kim, Dong-Seuk;Kim, You-Taek
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.333-334
    • /
    • 2006
  • Extinguishing a fire at an early stage is most important to prevent spreading of a fire in Unmanned Engine Room. The most proper fire extinguish system was analyzed after examining the Automatic spread Extinguish System, which is mostly installed in Unmanned Engine Room, reproduced in the condition of real Unmanned Engine Room.

  • PDF

ANALYSIS OF THE ENHANCEMENT OF COOLING EFFICIENCY OF A VEHICLE IN THE ENGINE ROOM (차량 엔진룸에서의 냉각효율 향상에 관한 해석)

  • Lee Dong-Ryul
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.55-62
    • /
    • 2005
  • Flow and temperature fields of a mid-size vehicle engine room are examined numerically to analyze the enhancement of cooling efficiency of several different design cases in a front body shape. The wall temperatures of a radiator and an engine parte are utilized to predict the effects of engine cooling on the thermal environment and the cooling efficiency in an engine room. The analyzed results are the mass flow rate at the upper and lower inlets, in the radiator, and the condenser. It is shown that the shape of the front end, lay-out of the engine parts, and the presence of the undercover greatly influence the flow and temperature fields, and the enhancement of cooling efficiency in the engine room.

A Study on the Development of a Resonator to Reduce the Ship Engine Room Noise (선박기관실의 소음 저감을 위한 차폐공명기의 개발에 관한 연구)

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.72-77
    • /
    • 2007
  • It is known that elimination of ship engine room noise is impossible thing, so the working environment in the engine room is getting worse because ships are recently built with huge engines to take higher sailing power. In the yacht and cruise yacht, the engine room noise is more serious because they have bigger engines relative to their hull sizes. The noise generated from the main engine makes the employee to hearing loss and the transmitted noise make the uncomfortable conditions in the cabins of ship. The noise generated by ship engine must be attenuate for the employee and passenger. In yacht and cruise yacht, the noise levels in cabines are the most important criterions to the value of commodities. In this study, the noise absorbtion barrier which have resonators is experimentally studied by the 1/3 octave band noise elimination rates(%).

  • PDF

Verification and Validation of Dynamic Clearance in Digital Mockup Using Engine Movement Roll Data (엔진 거동을 고려한 DMU(Digital Mockup)에서의 다이나믹 간격 검증)

  • Kim, Yong-Suk;Jang, Dong-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.56-61
    • /
    • 2010
  • This paper presents dynamic clearance verification considering engine movement for vehicle engine room package and validates through physical vehicle test. Traditionally, static clearance guide has been used for engine room package, but it's only 2-dimension criteria that results in requiring unnecessary space and it's not possible to conduct engine movement with real driving conditions. Thus, the dynamic DMU considers engine movement based on 28 load cases that are Roll Data analyzed by CAE for maximum engine movement and visualizes part-to-part dynamic clearance into virtual space. The dynamic DMU enables to develop compact engine room package without unnecessary space. The result of comparison between simulation and physical test has 0.892 correlation coefficient.

Engine room cooling system using jet pump (제트 펌프를 이용한 엔진 룸 냉각 시스템)

  • Lim, Jeong-Woo;Lee, Sang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.162-167
    • /
    • 2000
  • Construction machinery includes an engine enclosure separated from a cooling system enclosure by a wall to reduce noise and advance cooling system performance. For this structure, however, the axial fan cannot be of benefit to the engine room, and so the temperature rise in the engine room makes several bad conditions. This paper proposes that hot air in engine room is evacuated tv secondary pipe using jet pump. This paper demonstrates the structure and the effect of jet pump and useful guideline on design of area, length, and shape of secondary pipe to maximize the effect of jet pump.

  • PDF

A Case Study on the Investigation of Vehicle Fire According to Drive Train (구동방식에 따른 승용차 엔진룸 화재조사 기법에 관한 사례 연구)

  • Son, J.B.;Kwon, H.H.;Lee, J.I.;Choi, D.M.
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.83-88
    • /
    • 2008
  • The fire outbreaking origin of vehicle fire would be classified into two positions such as engine room and passenger room of vehicle. As a firewall is installed between engine room and passenger room, in case of engine fire, it could be assumed that it takes about 10 to 15 minutes for the fire to spread into passenger room There are two different vehicle engine layouts such as transversal and lateral layout, and the fire spreading process and resulting damage patterns on left and right side dash-panel are different depending on the engine layouts. In accordance, the first thing to do for correct and speedy finding of the fire origin place is considered to be an investigation into the dash-panel damage in case of engine room fire investigation.

  • PDF

Reengineering of Bus Engine Room Structure for Preventing Thermal Damages (열해현상 방지를 위한 버스 엔진룸 구조개선)

  • 맹주성;윤준용;손한규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-55
    • /
    • 2000
  • Four types of different flow inlet models were tested to improve the flow uniformity at the inlet of the radiator and to prevent thermal damages of auxiliary units from the hot air in the bus engine room. Measurements and numerical calculations were performed and their results were in a good agreement with each other. Simultaneously temperature measurements were carried out under the conditions of actual bus driving. As designing the new flow inlet at the partition board which seperates the engine space and radiator space, flow circulation can be achieved and fresh air comes into the engine room from the bottom. It was proved that new inlet makes the one air temperature cooling down in the engine room, the other uniformity improvement.

  • PDF

A Vibration Isolation Design for Engine Room Opening Deck around Heavy Spare Parts of the Main Engine (Main Engine의 Heavy Spare Parts가 설치된 Engine Room Opening Deck의 방진 설계 사례)

  • Jeon, Yong-Hoon;Lim, Gu-Sub;Jeong, Tae-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.93-96
    • /
    • 2009
  • Foundation structure for the main engine heavy spare parts in the engine room is susceptible to resonance problem due to outfitting weight. In addition the deck floor has a large opening for the main engine installation and maintenance, which further weakens the foundation structure. To reinforce the weak structure, two types of approaches have been used; 1) insert an H-pillar below or above the floor and 2) increase the stiffener size. In this paper, the H-pillar approach is used to solve the vibration problem of the foundation structure in the engine room opening area. A commercial program is used to analyze the vibration problem ad to find the location and the size of the H-pillar. Modal test at the quay and on-board vibration measurement during the sea trial have confirmed the validity of inserting an H-pillar below the floor.

  • PDF

Numerical analysis for development of vehicle engine room cooling hood (차량 엔진룸 냉각용 후드 개발을 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.92-97
    • /
    • 2018
  • This study deals with the numerical analysis for hood development to improve the cooling effect of the engine related components in engine room. Reducing the component temperature in engine room caused by a sudden temperature deviation can minimize the durability degradation of components. Therefore, in this study, numerical analysis for the development of the hood in engine room was carried out in four parts such as generator, battery, ECU and power steel oil which are relatively easy to control temperature among the main components in engine room. In order to verify the numerical analysis, experiments were conducted under the same conditions as those assumed in the numerical analysis.