• 제목/요약/키워드: Engine Motion

검색결과 379건 처리시간 0.031초

Study of Combustion and Emission Characteristics for DI Diesel Engine with a Swirl-Chamber

  • Liu, Yu;Chung, S.S.
    • 한국분무공학회지
    • /
    • 제15권3호
    • /
    • pp.131-139
    • /
    • 2010
  • Gas motion within the engine cylinder is one of the major factors controlling the fuel-air mixing and combustion processes in diesel engines. In this paper, a special swirl-chamber is designed and applied to a DI (direct injection) diesel engine to generate a strong swirl motion thus enhancing gas motion. Compression, combustion and expansion strokes of this DI diesel engine with the swirl-chamber have been simulated by CFD software. The simulation model was first validated through comparisons with experimental data and then applied to do the simulation of the spray and combustion process. The velocity and temperature field inside the cylinder showed the influences of the strong swirl motion to spray and combustion process in detail. Cylinder pressure, average temperature, heat release rate, total amount of heat release, indicated thermal efficiency, indicated fuel consumption rate and emissions of this DI diesel engine with swirl-chamber have been compared with that of the DI diesel engine with $\omega$-chamber. The conclusions show that the engine with swirlchamber has the characteristics of fast mixture formulation and quick diffusive combustion; its soot emission is 3 times less than that of a $\omega$-chamber engine; its NO emission is 3 times more than that of $\omega$-chamber engine. The results show that the DI diesel engine with the swirl-chamber has the potential to reduce emissions.

천연가스엔진의 실린더내 흡기유동개선에 관한 연구 (A Study on the Improvement of In-Cylinder Flow Motion in the Natural Gas Engine)

  • 서승우;정동수;오승묵;최교남
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.121-126
    • /
    • 1993
  • In general, natural gas engine converted from gasoline engine has disadvantage of power decrease. In order to increase power output in natural gas engine, the improvement of in-cylinder flow motion has been believed as the most effective method. In this study, the geometry of combustion chamber in 4 valve DOHC natural gas engine is modified, and in-cylinder flow patterns are analyized. Also engine performance is evaluated according to the modification of in-cylinder flow motion.

  • PDF

차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계 (Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body)

  • 박철희;오진우
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

선박용 엔진의 흡기포트 형상에 따른 텀블 및 내부 유동 특성에 관한 수치적 연구 (A Numerical Study on the Characteristics of Tumble and Internal Flow According to Intake Port for Marine Engine)

  • 이병화;장영준;전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.498-505
    • /
    • 2008
  • Many researches have been studied on in-cylinder flow as one of dominant effects for an engine combustion. The combustion phenomena of reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. To know this relationship definitely, this paper describes analytical results of the tumble motion, swirl motion, turbulence intensity, turbulence inside the cylinder of marine engine. 3-D computation has been performed by using STAR-CD solver and es-ice.

피스톤 어셈블리의 2차 운동에 관한 시뮬레이션 (Simulation of Secondary Motion of Piston Assemblies)

  • 오병근;조남효
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.231-243
    • /
    • 2000
  • This paper describes a simulation of secondary motion of piston assemblies using PISDYN by Ricardo. Motions of the piston, pin, rod and skirt are separately calculated, by integrating equations of motion for individual components and dynamic degrees of freedom. The effects of engine speed at full load and pin offsets on the piston assembly secondary motions, forces and friction were investigated in parametric study for 4-cylinder gasoline engine. Results show that lateral displacement and friction loss of the piston increase as a function of engine speed. The lateral motion of the piston is affected by the change in pin offset. The minimum friction loss for the condition of 4800rpm WOT occurs at a pin offset of 1.6mm.

  • PDF

Free-Piston 엔진용 평판형 선형 발전기를 이용한 기동모드 해석 (Starting Mode Analysis of Flat-type Linear Generator for Free-Piston Engine)

  • 김영욱;임재원;정현교
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.966-971
    • /
    • 2008
  • Free-piston engine system is a new type energy converter which uses a linear motion of piston by using linear generator. In free-piston engine system, the piston is not connected to a crank-shaft. The major advantages of free-piston engine system are high efficiency and low mechanical loss from the absence of motion conversion devices. Linear generator of free-piston engine system is used as generator and starting motor. In design step, considering of back-emf and detent force characteristics for generating mode and thrust and control characteristics for starting mode is needed. In this research, generating mode of flat-type linear generator and tubular-type linear generator is analyzed by finite element analysis method and starting mode of both type linear generators is analyzed by using capability curve. Capability curve is plotted from electrical parameters of both type linear generator and motion profile is calculated from mechanical parameters.

실린더내 흡기유동개선이 천연가스엔진의 연소성능에 미치는 영향 연구 (A Study on the Combustion Performance by the Improvement of In Cylinder Flow Motion in the Natural Gas Engine)

  • 정동수;서승우;오승묵;엄종호;장영준
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.90-96
    • /
    • 1995
  • In general, natural gas engine converted from gasoline engine has disadvantage of power decrease. In order to increase power output in natural gas engine, the improvement of in-cylinder flow motion has been believed as the most effective method. In this study, the geometry of combustion chamber in 4 valve DOHC natural gas engine is modified, and in-cylinder flow patterns is analyized. Also engine performance is evaluated according to the modification of in-cylinder flow motion.

  • PDF

엔진 연결봉 베어링의 운동 궤적 해석 (Analysis of Journal Locus in a Connecting Rod Bearing)

  • 조명래;정진영;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.183-189
    • /
    • 1997
  • This paper presents the motion of dynamically loaded journal in the connecting rod bearing of reciprocating internal combustion engine. Journal motions in engine bearings have been composed of two components, which was rotational and translational motion. Early study of journal locus in engine bearing had been performed on each motion. This paper has been considered two motions simultaneously. Reynolds equation including the squeeze effect has been analyzed using the ADI method, and real engine bearing and crankshaft system has been considered to calculate the cyclic external force. The equations of journal motion have been derived and then the numerical integration of these equations performed by 4th order Runge-Kutta method. This paper gives various journal orbits in connecting rod bearing depending on cyclic external forces, rotating speeds, and bearing parameters.

  • PDF

간접분사식 디젤엔진의 실운전중 피스톤 Slap 운동측정에 관한 실험적 연구 (An Experimental Study on the Piston Slap Motion Measurement during Real Operation of an IDI DIESEL Engine.)

  • 박승일;김승수
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 1993
  • Piston slap is one of the major sources of noise in a 4-cycle diesel engine. Piston slap is not only one of major source mounted near the top and bottom of the piston thrust and antithrust skirts. Effects of engine speed, load and coolant temperature on piston motion were investigated. The measured piston motion showed 6 slapes per cycle resulting from the change of side force. Major piston slap timing was retarded as engine speeds became higher. The increase of engine load made large piston transverse movement toward thrust side of cylinder block. Piston transverse movement was due to reduced piston-liner clearance at higher coolant temperature.

  • PDF

강체 운동 해석을 통한 엔진의 가속도 예측 (Predict the engine Acceleration by Analyzing the Rigid Body Motion)

  • 김병현;박종호;이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.351-356
    • /
    • 2011
  • Some materials show the character of rigid body in low frequency spectrum. The rigid body motions are consisted of translational and rotational motions. Especially, we can get the acceleration or displacement of a random point in the rigid body by analyzing rigid body transfer matrix at the car's engine and power train. Actually it is difficult to measure the acceleration by attaching the sensor inside of the engine and power train. So the hard to predict acceleration data can be achieved attaching the sensor on the outside of the engine and power train by analyzing the data of rigid body motion which the engine is operated using dynamo. Also this paper will show the change of predicted data and accuracy variation by not using all the measured data but a few exceptions of the point number.

  • PDF