• Title/Summary/Keyword: Engine Drive

Search Result 284, Processing Time 0.03 seconds

A Study on the Determination of the Main Design Parameters for the Development of Marine Stirling Engines (박용 스터링엔진 개발을 위한 주설계변수 결정에 관한 연구)

  • 이택희;이명호;이종원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.63-72
    • /
    • 1993
  • This paper deals with the determination of the main design parameters on the efficient .betha. type stirling engine for marine use having the rhombic drive mechanism. This studies are performed as following. (1) The characteristics of $\beta$ type stirling engine, (2) The kinds of driving mechanism, (3) The structure of rhombic drive mechanism, (4) The reasons of making choice of the rhombic drive mechanism in $\beta$ type stirling engines, (5) Ultimately the purpose of this paper is to determine the main design parameters of $\beta$ type stirling engines for marine use having the rhombic drive mechanism. Finally, We can adapt the result of this paper in designing of $\beta$ type stirling engine driven by the rhombic drive mechanism.

  • PDF

A mathematical model of engine control (엔진제어의 수학적 모델)

  • 김유남;이윤우;박희철;조장원;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.214-218
    • /
    • 1988
  • This paper suggests mathemathical engine model which can simulate generalized gasoline engine. Suggested engine model contains air/fuel inlet element, intake manifold, combustion, engine dynamics. In order to analyze a gasoline engine, physical characteristics of engine and steady state engine data should be controlled. In adaptation for abrupt change of circumstance or drive conditions, this model can analyze important physical phenomena in the intake manifold by computer simulation. This model can also evaluate statuses of drive under various working conditions precisely. Therfore, this model suggests basic datum to evaluate the engine system which are needed in designing and development of engine controller.

  • PDF

A Study of the Control Logic Development of Driveability Improvement in Vehicle Acceleration Mode (차량 급가속시 운전성 향상을 위한 제어로직 개선에 관한 연구)

  • 최윤준;송해박;이종화;조한승;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.101-116
    • /
    • 2002
  • Modern vehicles require a high degree of refinement, including good driveability to meet customer demands. Vehicle driveability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore, Engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes analysis procedures using a mathematical model which has been developed to simulate spark timing control logic. Inertia mass moment, stiffness and damping coefficient of engine and drive train were simulated to analyze the effect of parameters which were related vehicle dynamic behavior. Inertia mass moment of engine and stiffness of drive line were shown key factors for the shuffle characteristics. It was found that torque increase rate, torque reduction rate and torque recovery timing and rate influenced the shuffle characteristics at the tip-in condition for the given system in this study.

A Study on the Reduction of the Torsional Angular Acceleration on Chain Drive Wheel of Marine Diesel Engine

  • Kim, Sang-Jin;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.215-223
    • /
    • 2007
  • When the propulsion shafting system of marine diesel engine is designed. the vibratory stresses on shafts should be reviewed and be satisfied with limits which are laid down by classification societies In addition. the torsional vibration aspects for crankshaft of main engine are requested to be checked by engine designers. Especially. for the 4, 5, and 6-cylinder engines. the 2nd order moment compensator(s) may be installed to compensate the external moments of engine and not to excite the hull girder vibration. This moment compensator which is mounted on fore and/or after-end of engine is driven by the roller chain drive for some of MAN 2-stroke diesel engines. While the engine is running, the roller chain Is worn down, which causes the extension of roller chain. The chain therefore should be checked and tightened by periods in order to keep its functionality. However. when the torsional angular acceleration of chain drive exceeds the certain limit. the chain will suffer the excessive slack and transverse vibration. This may cause fatigue, wear or damage on the chain and the chain ultimately may be broken. The research object of this thesis is to review factors which affect the angular acceleration of chain drive and to find out how to decrease the angular acceleration of driving chain by checking factors which have a major contribution to acceleration reduction using the statistical method of DOE(design of experiment), correlation analysis and regression analysis methods.

An Experimental Study of the Improvement of Driveability in Vehicle Acceleration Mode (차량 급가속시 운전성 개선을 위한 실험적 연구)

  • 송해박;최윤준;이종화;조한승;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.65-75
    • /
    • 2001
  • Modern vehicles require a high degree of refinement including good driveability. Vehicle driveability, which becomes a key decisive factor f3r marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes experimental procedures which have been developed to measure engine torque and investigate shuffle characteristics. To analyze the vehicle dynamic behavior, fractional torques and inertia mass moment of engine, and drive train were measured. Shuffle characteristics during tip-in condition were investigated in an experimental vehicle at 2nd and 3rd gear stages. It was found that the shuffle characteristics were caused by sudden changes of engine torque and have a different vibration frequency with gear stage variation. Inertia mass moment of engine including flywheel rotation showed a key factor for the shuffle characteristics.

  • PDF

Development of T700/701K engine for KUH (한국형 기동 헬기 엔진 (T700/701K) 개발)

  • Kim, Jae-Hwan;Ahn, Iee-Ki;Lee, Dae-Sung;Sung, Ok-Suck;Sung, In-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.506-511
    • /
    • 2010
  • This paper presents development activities of the T700/701K turbo-shaft engine for Korean Utility Helicopter(KUH). The T700/701K is the first rear-drive variant of the GE's T700 engine which is proven for military applications in the world. The main workscope of the development includes a modification from a front-drive engine to a rear-drive one, an performance enhancement of the power turbine and an incorporation of two channel FADEC(Full Authority Digital Engine Control) system for more reliable operation. The first engine run for development and qualification test was successfully completed in 2008. Since the PFRT(Preliminary Flight Rating Test) has been completed, the first flight of the engine installed in the first prototype of KUH has been successfully demonstrated in March, 2010 and the engine installation compatibility tests are being carried out during KUH flight test. The test and evaluation for qualification of the engine has been done except for the LCF test up to date.

  • PDF

Development of T700/701K Engine for KUH (한국형 기동 헬기 엔진 (T700/701K) 개발)

  • Kim, Jae-Hwan;Ahn, Iee-Ki;Lee, Dae-Sung;Sung, Ok-Suck;Sung, In-Kyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.79-84
    • /
    • 2011
  • This paper presents development activities of the T700/701K turbo-shaft engine for Korean Utility Helicopter(KUH). The T700/701K is the first rear-drive variant of the GE's T700 engine which is proven for military applications in the world. The main workscope of the development includes a modification from a front-drive engine to a rear-drive one, an performance enhancement of the power turbine and an incorporation of two channel FADEC(Full Authority Digital Engine Control) system for more reliable operation. The first engine run for development and qualification test was successfully completed in 2008. Since the PFRT(Preliminary Flight Rating Test) has been completed, the first flight of the engine installed in the first prototype of KUH has been successfully demonstrated in March, 2010 and the engine installation compatibility tests are being carried out during KUH flight test. The test and evaluation for qualification has been done except for the low cycle fatigue test up to date.

An Experimental Study on the Farm Engine Driven by Rice Chaff Gas (왕겨가스 에 의한 農용石油機關 의 驅動 에 관한 硏究)

  • 이영재;조명제
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.233-239
    • /
    • 1983
  • Gasification of rice chaff has traditionally been used to produce a clean fuel suitable for lighting, heating and engine application. Since oil crisis, a series of experimental study has been performed to drive a farm engine by agricultural wastes. We produced a combustible gas from rice chaff with a fixed bed up-draught gasifier system, and applied it to a conventional farm kerosene engine. This experiment was quite successful one. We could drive the farm engine with maximum horse power of 9 PS by rice chaff gas which was fairly competitive to the continuous horse power of 10 PS obtained when kerosene was used. Problems of tar existence in gas have been discussed, but we are confident that these can be solved in near future. Development and application of the gasification process will help our farm economy, not only by conserving petroleum oil but by utilizing agricultural wastes.

Qualification Process of T700/701K Engine for KUH (한국형 기동헬기 엔진 (T700/701K) 인증 과정)

  • Jung, Yong-Wun;Kim, Jae-Hwan;Ahn, Iee-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.344-347
    • /
    • 2011
  • This paper presents qualification process of the T700/701K turbo-shaft engine for Korean Utility Helicopter(KUH). The T700/701K is the rear-drive variant of the GE's T700-701C/D engine which was qualified for military applications in the world. The main scope of the development is the modification from a front-drive engine to a rear-drive one, the performance enhancement of the power turbine and the incorporation of two channel FADEC(Full Authority Digital Engine Control) system for more reliable operation. Therefore, T700/701K engine must be qualified by Korean government in order to perform a flight in the country. Reflecting the influence of developing scope, the main requirements including performance and control are verified by test and analysis, while the requirement for module or component that is same to that of T700-701C/D are verified by similarity.

  • PDF

A Study on the Emission Characteristics of LNG-diesel Dual-fuel Engine for Euro 2 Standard (Euro 2 기준 LNG-경유 혼소엔진의 배출가스 특성에 관한 연구)

  • Cho, Gyu-Baek;Kim, Chong-Min;Kim, Dong-Sik;Kim, Hong-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • Heavy duty diesel engine has relatively small portion of whole vehicles due to long drive distance and large engine displacement, but largely influences atmosphere environment. City buses changed to CNG (Compressed Natural Gas) bus with Korea-Japan Worldcup. Heavy duty truck and intercity bus, however, were impossible to use CNG because those kinds of vehicles had long drive distance and CNG station was installed mainly at the around of the bus garage of city. Insulation container storing the natural gas as a liquid makes heavy duty truck and intercity bus possible to use the natural gas. Drive using diesel is possible where is hard to recharge the gas. With LNG (Liquefied Natural Gas), the dependence on oil is largely decreased, PM (Particulate Matter) and NOx which is chronic disadvantage of diesel is remarkably reduced and finally $CO_2$, the representative green house gas, is reduced over 10%.