• Title/Summary/Keyword: Engine Cooling System

Search Result 314, Processing Time 0.025 seconds

Improvement of Water Cooling System of a Small Diesel Engine (농업용(農業用) 소형(小型)디젤기관(機關) 냉각(冷却)시스템의 개선(改善)에 관(關)한 연구(硏究))

  • Kim, S.R.;Myung, B.S.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.1
    • /
    • pp.3-14
    • /
    • 1993
  • This study was conducted to obtain basic data which affected engine performance of the power tiller being widely used in the rural area. Among the various factors being influenced engine performance, factors of radiator, of capacity of cooling water, and of efficiency of cooling fan were considered as the major factors in this study. Because diesel engine being used to power tiller are scarce of cooling water, it is over-heated in time of rated power. Therefore, a experiment was performed to determine the capacity of cooling water of engine with circuit system of cooling water adhered.

  • PDF

An Experimental Study on Effects of Cooling Airflow rate on the Automotive Cooling Performance (냉각공기량이 자동차 냉각성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Jin-Hyun;Lee, Hae-Chul;Park, Jong-Nam;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.950-954
    • /
    • 2001
  • Gasoline engine manufacturers are currently considering designs that will result in low combustion air temperature for improvement of fuel consumption and emission levels. There are a variety of cooling systems that can be used to accomplish this goal. Coolong is therefore normally achieved through a balance of ram and fan action. This paper studies the various systems and compare the cooling performance for several conditions, based on a automotive engine. An experimental analysis was developed to predict the interaction of the fan system and the heat exchangers of the engine cooling system. The local temperature induced by the fan on the cooling system is measured. These experimental result were accomplished using air flow management techniques.

  • PDF

An Experimental Study on the Effects of the Automotive Cooling Performance by Cooling Airflow rate (II) (냉각 공기량이 자동차 냉각성능에 미치는 영향에 관한 실험적 연구(II))

  • Kim, J.H.;Lee, H.C.;Lee, M.H.;Park, J.N.;Cha, K.O.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.940-945
    • /
    • 2001
  • Gasoline engine manufacturers are currently considering designs that will result in low combustion air temperature for improvement of fuel consumption and emission levels. There are a variety of cooling systems that can be used to accomplish this goal. Cooling is therefore normally achieved through a balance of ram and fan action. This paper studies the various systems and compare the cooling performance for several conditions, based on a automotive engine. An experimental analysis was developed to predict the interaction of the fan system and the heat exchangers of the engine cooling system. The local temperature induced by the fan on the cooling system is measured. These experimental result were accomplished using airflow management techniques.

  • PDF

A Study on Heat Transfer Characteristics of Automotive Engine Cooling Control System (자동차용 엔진 냉각시스템의 열전달 특성에 관한 연구)

  • Park, Kyoung-Suk;Won, Jong-Pil;Jung, Dong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1183-1194
    • /
    • 1998
  • This paper describes a theoretical model developed for analyzing the heat transfer of automotive cooling systems. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through cylinder wall in engine cylinder was analyzed by using a two zone combustion model. This paper studied how cooling condition would affect engine heat release rate and measured temperature distribution of coolant in water jacket.

Analysis of fan clutch characteristics for electronic engine cooling control system (전자식 엔진냉각제어 시스템을 위한 팬 클러치 특성 분석)

  • Ryu, Hye-Yeon;Kim, Hyun-Hee;Jeong, Sung-Min;Koh, Young-Ho;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.241-246
    • /
    • 2018
  • The engine cooling system is a device that keeps the temperature of the engine room at a proper level by driving the cooling fan when the engine room temperature that occurs during driving is above a certain temperature. Recently, the vehicle cooling system has been changed to electronic system. Therefore, in this paper, we will analyze the clutch operation characteristics for designing a superior electronic fan clutch. For this purpose, an electronic fan clutch was designed and a test bed for performance evaluation was constructed and analyzed.

CONTROL STRATEGY OF ELECTRIC COOLANT PUMPS FOR FUEL ECONOMY IMPROVEMENT

  • CHO H.;JUNG D.;ASSANIS D. N.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.269-275
    • /
    • 2005
  • The engine cooling system for a medium duty V6, 4.5 L diesel engine was modeled with a commercial code, GT-Cool in order to investigate the effect of controllable electric pump on the cooling performance and the fuel economy. The simulation results of the cooling system model with mechanical coolant pump were validated with experimental data. Two different types of electric pumps were implemented into the cooling system model and PID control for electric pump operation was incorporated into the simulation study. Based on the simulation result with electric pump, conventional thermostat hysteresis was modified to reduce pump operation for additional improvement of fuel economy, and then the benefit of electric pumps with modified thermostat hysteresis on fuel economy was demonstrated with the simulation. The predicted result indicates that the cooling system with electric pump and modified thermostat hysteresis can reduce pump power consumption by more than $99\%$ during the FTP 74 driving cycle.

An Experimental Study on Engine Cooling System Improvement (엔진 냉각 시스템 개선에 관한 실험적 연구)

  • Chon, M.S.;Hwang, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.77-82
    • /
    • 2004
  • This paper describes the improvement of engine cooling system. To improve engine cooling performance, the authors approached in two ways. One is to increase water pump performance, changing of impeller shape and lightening of material were carried out. The second one is cooling efficiency rise, which were investigated with head gasket coolant flow passage optimization with flow visualization technique. The test results show that water pump performance was increased effectively, reduction of pump drive torque, and increase of pump flow-rate and pressure rise. Gasket hole pattern optimization test results represent an optimized head coolant flow which stands cross flow from exhaust to intake port side and small vortex were removed.

  • PDF

Configuration and Analysis of a Feed-forward Control System for Jacket Cooling Water Temperature of Marine Prime Diesel Engine (주기관 쟈케트냉각수 온도를 위한 피드포워드 제어시스템의 구성과 분석)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1303-1308
    • /
    • 2008
  • Keeping cooling water temperature higher within the allowable range helps marine engines to run in more efficient condition especially when the engine load is low. Temperature control of jacket cooling water in outlet side of main engine has been more widely adopted to ships these days for the purpose to reduce fuel consumption rate. But If the temperature sensor for the control loop is placed at the outlet of engine, it brings more difficulties in attaining stable and desirable properties due to dead times included in pipe length and engine itself comparing to the case where the measuring point is at the inlet side of main engine. In relation with this problem, Feed-forward control could be one of realistic solutions as it reveals good properties and requires less cost for system configuration. This study suggests a forward control system which leads to improved temperature control performances to disturbance signals which could arise from variation of engine load or weather condition. Two dead times in the modelling were described, considering pipe length between the actuator and the engine as well as the thermal process inside the engine. The results of analysis were shown by simulations to confirm responses under different conditions.

Thermal Flow Analysis of Vehicle Engine Cooling System

  • Park, Kyoung-Suk;Won, Jong-Phil;Heo, Hyung-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.975-985
    • /
    • 2002
  • This paper deals with theoretical model developed for analyzing the heat transfer of automotive cooling systems. The model has a modular structure which links various cooling system submodels. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through the cylinder wall in engine cylinder was analysed by using an engine cycle simulation program. In this paper, details of each submodel are described together with the overall structure of the vehicle model.

An Experimental Study on the Metal Surface Temperature and Heat Transfer by Improving Gasoline Engine Cooling Passages (가솔린엔진의 냉각계 유로 변경을 통한 금속면 온도 및 전열에 관한 실험적 연구)

  • 이재헌;류택용;신승용;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Metal surface temperatures around the combustion chamber in a gasoline engine directly affect thermal durability and performance of the engine. Metal surface temperatures are influenced by many cooling factors such as drilled water passage, deflector, combustion chamber wall thickness, pillar, and coolant flow pattern. The object of this study is to learn how the coolant passages and coolant flow pattern in an engine influence to the engine metal surface temperature at engine full load and speed. From the test result, it is suggested a plan to reinforce the engine stiffness and to reduce the thermal stress simultaneously. Also, approaches are introduced to reduce the thermal load on the engine by adjusting the discharging direction from the water pump and by optimizing the water transfer holes in the cylinder head gasket. These methods and the optimized engine cooling system, which were suggested in this paper, were adapted for an engine in progress to eliminate the exhaust valve seat wear.