• Title/Summary/Keyword: Engine Controller

Search Result 412, Processing Time 0.038 seconds

Design of Optimal Idle Speed Controller by Sliding Mode Observer (슬라이딩 모드 관측기에 의한 최적의 공회전 제어기 설계)

  • Lee, Young-Choon;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.161-167
    • /
    • 2001
  • This paper presents an approach to nonlinear engine idle controller and intake manifold absolute pressure(MAP) observer based on mean torque production model. A stable engine idle speed is important in that the unstable engine Idle mode can make engine to drooping or stall state. A sliding fuzzy controller has been designed to control engine idle speed under load disturbance. A sliding observer is also developed to estimate the intake manifold absolute pressure and compared with the actual MAP sensor value. The sliding mode observer has shown good robustness and good tracking performance. The inputs of sliding fuzzy controller are the errors of rpm and MAP. The output is a duty cycle(DC) for driving a idle speed control valve(ISCV).

  • PDF

An Experimental Study upon Modeling and Control of Coupled Engine and Generator System (엔진-발전기 시스템 모델링 및 제어특성에 관한 실험적 연구)

  • 송승호;정세종;오정훈;함윤영;최용각;이광희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2003
  • Modeling of engine-generator system and its control responses are investigated using high performance generator controller. The nonlinear engine is modeled using mean torque production model based on experimental engine map. In case of diesel engine. the amount of injected fief is decided by engine controller depending on the APS(Acceleration Position Sensor) value. An electromechanical generator model contains electrical circuits and moment of inertia. The generator controller maximizes the performance of generator using decoupling and linearized current feedback control. The generator control system consists of 3-phase IGBT inverter and controller board based on 32 bit floating point DSP. Field oriented control algorithm with digital current feedback control at 10kHz sampling enabled high performance torque and speed control of induction machine. Not only the steady state but also the transient state responses can be evaluated through a batch test of the engine generator system. Developed engine and generator modeling and control can be utilized in various applications such as Series Hybrid Electric Vehicle(SHEV), engine-generator for emergency, and other hybrid generation systems.

Design of Fuzzy-PID Controller for Turbojet Engine of UAV Using LabVIEW (LabVIEW를 이용한 무인항공기용 소형 터보제트 엔진의 Fuzzy-PID 제어기 설계)

  • Shin, Haeng-Cheol;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.190-195
    • /
    • 2016
  • In this paper, Propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Fuzzy-PID control algorithm. To prevent any surge or a flame out event during the engine acceleration or deceleration, the Fuzzy-PID controller effectively controls the fuel flow input of the control system. Fuzzy-PID results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using LabVIEW to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

Design of Controllers for the Stable Idle Speed in the Internal Combustion Engine

  • Lee, Young-Choon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.54-60
    • /
    • 2001
  • This paper deals with control design method having anticipation delay which is proposed for the discrete nonlinear engine where system dynamics is not accurate. Due to the induction-to-power delay in internal combustion(IC) engine having abrupt torque loss, underdamping and chattering in engine idle speed becomes a serious problem and it could make drivers uncomfortable. For this reason, Three types of the closed-loop controller are developed for the stable engine idle speed control. The inputs of the controllers are an engine idle speed and air conditioning signal. The output of the controllers is an duty cycle to operate the idle speed control valve(ISCV). The proposed controllers will be useful for improving actual vehicles since these shows good test

  • PDF

Speed Control of a Diesel Engine by Means of the Model Matching Method (모델 맷칭법에 의한 디젤기관의 속도제어)

  • 유희환;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.131-137
    • /
    • 1996
  • The existing digital governors are in the beginning stage. Placing the focus on the marine site, most of the digital governors developed are still using the simple PID algorithm. But, the performance of a diesel engine is widely changed according to the parameters of the PID controller. So, this article describes a new method to adjust the parameters of the PID controller in a marine digital governor. In this paper, the diesel engine is considered as a nonoscillatory second order system. A new method to adjust the parameters of the PID controller for speed control of a diesel engine is proposed by means of the model matching method. Also, the simulations by numerical methods are carried out in cases of the exact understanding or out of the parameters of a diesel engine respectively. And this paper confirms that the proposed new method here is superior to Ziegler & Nichols's method through the comparisons and analysis of the characteristics of indicial responses.

  • PDF

An Auto Tuning Controller with Double Inference Engine (이중 퍼지 추론에 의한 자동 동조 제어기)

  • Kim, Bong-Jae;Ahn, Jung-Rok;Choi, Jong-Su;Chung, Gwang-Jo;Chong, Won-Yong;Lee, Soo-Huem
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.695-698
    • /
    • 1995
  • The shape and width of fuzzy membership function has an effect on performance of fuzzy controller. In this paper, fuzzy controller is proposed to improve the control performance of fuzzy controller. It has two fuzzy inference engine. The one is typical fuzzy inference engine, the other is proposed to infer optimal width of membership function in fuzzy controller from plant constant (K,T,L). To show the effectiveness of this fuzzy controller with double fuzzy inference engine, it is applied to plant (dead time + 1st order delay) with various plant constant.

  • PDF

Active Vibration Control Experiment of Cantilever Using Active Linear Actuator for Active Engine Mount (능동 엔진 마운트 제어용 Active Linear Actuator를 이용한 외팔보 능동진동제어 실험)

  • Yang, Dong-Ho;Kwak, Moon-K.;Kim, Jung-Hoon;Park, Woon-Hwan;Sim, Ho-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1176-1182
    • /
    • 2010
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mount have been developed to cope with such specifications. The active-type engine mount consists of sensor, actuator and controller where a control algorithm is implemented. The performance of the active engine mount depends on the control algorithm if the sensor and actuator satisfies the specification. The control algorithm should be able to suppress persistent vibrations caused by the engine which are related to engine revolution. In this study, three control algorithms are considered for suppressing persistent vibrations, which are the positive position feedback control algorithm, the strain-rate feedback control algorithm, and the modified higher harmonic control algorithm. Experimental results show that all the control algorithms considered in this study are effective in suppressing resonant vibrations but the modified higher harmonic controller is the most effective controller for non-resonant vibrations.

Design and implementation of a throttle valve controller for engine dynamometer systems using fuzzy logic (퍼지논리를 사용한 엔진 동력계 시스템의 트로틀 밸브 제어기 설계 및 구현)

  • Shin, Wee-Jae;Lee, Sang-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.588-593
    • /
    • 1997
  • This paper shows a design and implementation of throttle valve controller for engine dynamometer system using fuzzy logic. Recently, we demanded the excellent measuring equipment so as to improve engine performance. The throttle valve control for engine dynamometer system is a very particular part in the engine control. Since the structure of engine dynamometer system is very complicated and has nonlinear elements which are influenced by disturbance of vibration, heating, cooling, and energy loss so on. In this paper, fuzzy logic control application have been successful in throttle valve control problem for engine dynamometer system in which the conventional control had difficulties dealing with the system. In this study, we propose a method that the control strategy uses Fuzzy Look-up table and normalization and obtained the satisfying result from realized throttle valve controller for engine dynamometer system.

  • PDF

A Controllers Comparison Experiment For Active-mount Control (능동마운트 제어를 위한 제어기 비교 실험)

  • Yang, Dong-Ho;Kwak, Moon-K.;Kim, Jung-Hoon;Park, Woon-Hwan;Kim, Ho-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.324-329
    • /
    • 2010
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mount have been developed to cope with such specifications. The active-type engine mount consists of sensor, actuator and controller where a control algorithm is implemented. The performance of the active engine mount depends on the control algorithm if the sensor and actuator satisfies the specification. The control algorithm should be able to suppress persistent vibrations caused by the engine which are related to engine revolution. In this study, three control algorithms are considered for suppressing persistent vibrations, which are the positive position feedback control algorithm, the strain-rate feedback control algorithm, and the modified higher harmonic control algorithm. Experimental results show that all the control algorithms considered in this study are effective in suppressing resonant vibrations but the modified higher harmonic controller is the most effective controller for non-resonant vibrations.

  • PDF

Fuel Flow Control of Turbojet Engine Using the Fuzzy PI+D Controller (퍼지 PI+D 제어기를 이용한 터보제트 엔진의 연료유량 제어)

  • Jung, Byeong-In;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.3
    • /
    • pp.449-455
    • /
    • 2011
  • In this paper, Proposed controller prevent compressor surge and reduce the acceleration time of the fuel flow control system for turbo-jet engine. Turbo-jet engine controller is designed by applying fuzzy PI+D control algorithm and make an inference by applying Mamdani's inference method and the defuzzification using the center of gravity method. Fuzzy inference results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller.