• Title/Summary/Keyword: Engagement Simulation

Search Result 128, Processing Time 0.019 seconds

A Study on the Control Algorithm for Engine Clutch Engagement During Mode Change of Plug-in Hybrid Electric Vehicles (플러그인 하이브리드 차량의 모드변환에 따른 엔진클러치 접합 제어알고리즘 연구)

  • Sim, Kyuhyun;Lee, Suji;Namkoong, Choul;Lee, Ji-Suk;Han, Kwan-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.801-805
    • /
    • 2016
  • In this paper, engine clutch engagement shock is analyzed during the mode change of plug-in hybrid electric vehicles. Multi-driving mode includes the EV (electric vehicle) mode, HEV (hybrid electric vehicle) mode, and engine operating mode. Depending on the mode change, the engine clutch is either engaged or disengaged. The magnitude of shock during clutch engagement is very important because it impacts vehicle acceleration and clutch synchronization speed, which affects ride comfort substantially. The performance simulator of plug-in hybrid electric vehicles was developed using MATLAB/Simulink. The simulation results show that the mode change control algorithm is necessary for minimizing shock during clutch engagement.

The Mediating Effect of Learning Flow on Learning Engagement, and Teaching Presence in Online programming classes (온라인 프로그래밍 수업에서 자기조절능력과 학습참여, 교수실재감에 대한 학습몰입의 매개 효과)

  • Park, Ju-yeon
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.6
    • /
    • pp.597-606
    • /
    • 2020
  • Recently, as students' programming classes are being conducted online, interest in factors that can lead to the success of online programming classes is also increasing. Therefore, in this study, online programming classes were conducted for specialized high school students using a web-based simulation programming tool through TinkerCad. In these online programming classes, students' self-regulation ability and learning flow were set as variables that influence both learning engagement and teaching presence, and the predictive power of each was analyzed. As a result, it was found that both self-regulation ability and learning flow were predictive variables for learning engagement and teaching presence, and that learning flow played a mediating role between self-regulation ability, learning engagement, and teaching presence. This study is meaningful in that it suggested that self-regulation ability and learning flow should be considered more meaningfully in online programming classes, and a practical strategy for this is presented.

The Normal Diving Simulation of the Underwater Vehicle Using the Standard Model Architecture for the Combined Simulation of Discrete Event System and Discrete Time System (이산사건 및 이산시간 혼합 표준모델구조를 활용한 수중운동체 정상잠항 시뮬레이션)

  • Son, Myeong-Jo;Lee, Hyun-Jin;Ham, Seung-Ho;Lee, Hyo-Kwang;Kim, Tae-Wan;Lee, Kyu-Yeul;Han, Soon-Hung;Nah, Young-In
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.656-668
    • /
    • 2008
  • When it comes to design and acquire underwater vehicles such as a submarine and a torpedo according to the process of SBA(Simulation Based Acquisition)/SBD(Simulation Based Design), it is necessary to predict the performance of interest precisely and to perform the test over and over again using the M&S(Modeling and Simulation) of the engineering and the engagement level. In this paper, we research the DEVS(Discrete Event System Specification) and DTSS(Discrete Time System Specification) formalism based standard model architecture for the underwater vehicle which can support both the heterogeneous level of the M&S(Engineering/Engagement) and the different system of the M&S(Discrete Event System and Discrete Time System). To validate this standard modeling architecture, we apply it to the submarine normal diving simulation.

The DEVS-based Detailed Implementation Method of the Command and Fire Control System for the Underwater Vehicle DEVS-HLA Simulation in the Engagement Level (교전급 수중운동체 DEVS-HLA 시뮬레이션을 위한 전술통제체계의 DEVS 기반 상세 구현 방법)

  • Son, Myeong-Jo;Cha, Ju-Hwan;Kim, Tae-Wan;Lee, Kyu-Yeul;Nah, Young-In
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.628-645
    • /
    • 2010
  • To perform the engagement level simulation between the underwater vehicle model and the surface model those are constituted with various systems/ sub-systems, we implemented four different federates as a federation according to the IEEE 1516 HLA (High Level Architecture) protocol that is the international standard in the distributed simulation. Those are CFCS (Command and Fire Control System) federate, motion federate, external entities (torpedos, countermeasure and surfaceship) federate, and visualization federate that interacts with OSG (Open Scene Graph)-based visualization rendering module. In this paper, we present the detailed method about the model constitution for discrete event simulation in the distributed environment. For the sake of this purpose, we introduce the DEVS (Discrete Event System Specification)-HLA-based modeling method of the CFCS federate that reflects not only the interations between models, but also commands from user and tactics manager that is separated from the model. The CFCS federate makes decisions in various missions such as the normal diving, the barrier misision, the target motion analysis, the torpedo launch, and the torpedo evasion. In the perspective of DEVS modeling, the CFCS federate is the coupled model that has the tactical data process model, command model and fire control model as an atomic model. The message passing and time synchronization with other three federates are settled by the $m\ddot{a}k$ RTI (Runtime Infrastructure) that supports IEEE 1516. In this paper, we provides the detailed modeling method of the complicated model that has hierarchical relationship such as the CFCS system in the submarine and that satisfies both of DEVS modeling method for the discrete event simulation and HLA modeling method for the distributed simulation.

The Federation Development for Underwater Warfare Simulation (수중 교전 시뮬레이션을 위한 페더레이션 개발)

  • Shin, Ji-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.11-18
    • /
    • 2007
  • Recently, as weapon systems have been more diverse and complicated, the factors of risk increase in development. Consequently, demanding reduction of acquired costs and period increase. Under the acquisition environment, more efficiently to develop weapon system, the necessity of application of defense M&S from requirement phase is on the rise. As the importance of M&S is stressed under distributed environment, so the standard of M&S(HLA, SEDRIS, etc.) and the system engineering process, namely FEDEP(Federation Development & Execution Process) have been developed. In this paper using the 5 phase expression, we constructed underwater engagement simulation(UNES) that prototype to develop naval weapon system test bed which take up integrated architecture in HLA. we developed simulators according to FEDEP for expandability and described process applying FEDEP fur UNES development.

  • PDF

A Technology on the Framework Design of Virtual based on the Synthetic Environment Test for Analyzing Effectiveness of the Weapon Systems of Underwater Engagement Model (수중대잠전 교전모델의 무기체계 효과도 분석을 위한 합성환경기반 가상시험 프레임워크 설계 기술)

  • Hong, Jung-Wan;Park, Yong-Min;Park, Sang-C.;Kwon, Yong-Jin(James)
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.291-299
    • /
    • 2010
  • As recent advances in science, technology and performance requirements of the weapons system are getting highly diversified and complex, the performance requirements also get stringent and strict. Moreover, the weapons system should be intimately connected with other systems such as watchdog system, command and control system, C4I system, etc. However, a tremendous amount of time, cost and risk being spent to acquire new weapons system, and not being diminished compared to the rapid pace of its development speed. Defense Modeling and Simulation(M&S) comes into the spotlight as an alternative to overcoming these difficulties as well as constraints. In this paper, we propose the development process of virtual test framework based on the synthetic environment as a tool to analyze the effectiveness of the weapons system of underwater engagement model. To prove the proposed concept, we develop the test-bed of virtual test using Delta3D simulation engine, which is open source S/W. We also design the High Level Architecture and Real-time Infrastructure(HLA/RTI) based Federation for the interoperation with heterogeneous simulators. The significance of the study entails (1)the rapid and easy development of simulation tools that are customized for the Korean Theater of War; (2)the federation of environmental entities and the moving equations of the combat entities to manifest a realistic simulation.

A Design of Anti-Aircraft Artillery Model for the Surface-to-Air Virtual Engagement (지대공 교전모의를 위한 대공포 모델 설계)

  • Yang, Chang-Deok;Yang, Ji-Youn;Kim, Cheon-Young;Hong, Young-Seok;Reu, Tae-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we have designed the Anti-Aircraft Artillery(AAA) model for the surface-to-air virtual engagement. The AAA model for the virtual combat simulation needs to detect the present target and estimate the target flight trajectory to find the aiming point. To find collision point of projectile fired from the artillery with the moving air target, we have presented the estimating technique for artillery aiming point. And we have analyzed the target probability of kill using Calton Hit function. Anti-air threat envelops are presented when the target velocity, position and the arrangement of four AAA are varying. Then we have compared the analyzed result using developed model with AEM model of MSA program.

Resupply Behavior Modeling in Small-unit Combat Simulation using Decision Trees (소부대 전투 모의를 위한 의사결정트리 기반 재보급 행위 모델링)

  • Seil An;Sang Woo Han
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.9-21
    • /
    • 2023
  • The recent conflict between Russia and Ukraine underscores the significant of military logistics support in modern warfare. Military logistics support is intricate and specialized, and traditionally centered on the mission-level operational analysis and functional models. Nevertheless, there is currently increasing demand for military logistics support even at the engagement level, especially for resupply using unmanned transport assets. In response to the demand, this study proposes a task model of the military logistics support for engagement-level analysis that relies on the logic of ammunition resupply below the battalion level. The model employs a decisions tree to establish the priority of resupply based on variables such as the enemy's level of threat and the remaining ammunition of the supported unit. The model's feasibility is demonstrated through a combat simulation using OneSAF.

Prelinimary Engagement Effect Analysis of Isotropic Kinetic Energy Warhead (등방성 운동에너지 탄두의 교전 효과 예비 분석)

  • Shim, Sang-Wook;Hong, Seong-Min;Seo, Min-Guk;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.440-448
    • /
    • 2015
  • Kinetic energy(KE) rod warhead system is a new interceptor which combines advantages of existing ones. This system is less dependant on a precision guidance than direct hit type warhead and gives high penetration rates than blast fragmentation type warhead. In this paper, isotropic KE rod warhead system is introduced with detonation/deployment model. A penetration effects of the deployed rods are calculated using TATE penetration equation. Also, an engagement performance analysis method is suggested. Finally, an optimal detonation time and engagement geometry is derived by Monte-Carlo simulation in various engagement situation using the performance analysis factor.

Computation Algorithm for Launch Acceptability Region of Air-to-Surface Missiles (공대지 유도탄의 발사유효범위(LAR) 산출 알고리듬)

  • Park, Sang-Sup;Hong, Ju-Hyeon;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.910-919
    • /
    • 2015
  • A weapon control algorithm equipped on a fighter is closely related to the mission accomplishment and fighter survivability during the engagement. In the case of a air-to-surface missile, the weapon control algorithm typically provides a pilot the target shoot-down possible region known as launch acceptability region(LAR) in the multi function display(MFD). LAR is produced by the range table(RT) through computation of an engagement range. In this paper, the operation system of AGM-84 and AGM-88 air-to-surface missiles is introduced. And the engagement range computation and LAR algorithm based on the real-time pseudo 6-DOF simulation are proposed. In order to verify the performance of the algorithm, numerical engagement simulations of air-to-surface missiles to produce LAR have been done.