• Title/Summary/Keyword: Energy-protein Requirements

Search Result 121, Processing Time 0.026 seconds

The Possible Minimum Chicken Nutrient Requirements for Protecting the Environment and Improving Cost Efficiency - Review -

  • Nahm, K.H.;Carlson, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.755-768
    • /
    • 1998
  • Nitrogen and phosphorus are major nutrients in animal feeds which partially remain in the environment as pollution. In addition, nitrogen and phosphorus along with energy are the main nutrients which determine the feed cost. Any decreases in the levels of these three nutrients can contribute to reducing the pollution problem as well as the cost of feed. The nutrient requirements for chickens in the work here reported should allow for the addition of mixed enzymes (phytases, proteases, glucanases, xylanases and others). Such minimal levels of crude protein in the research results which are here reported are 16% for 0-6 weeks of age, 13.5% for 7-12 weeks of age, 11.5% for 13-18 weeks of age for layer type chicks, 13% for layer, 18% for 0-3 weeks of age broiler and 16.5% for 4-7 weeks of age broiler. These research projects have been done without adding enzyme supplements to their experimental diets. The minimal values of phosphorus, shown as available phosphorus, are 0.25% for pullets, 0.09% for layers and 0.25% for broilers with the addition of phytase. The minimum energy requirement (metabolizable energy) for reducing the feed cost could be summarized as 2,750 kcal per kg feed for pullets, 2,800 kcal for layers and 2,700 kcal for broilers.

Nutrient Balance and Glucose Metabolism of Female Growing, Late Pregnant and Lactating Etawah Crossbred Goats

  • Astuti, D.A.;Sastradipradja, D.;Sutardi, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1068-1075
    • /
    • 2000
  • A study involving nutrient balances and radioisotope labeling techniques was undertaken to study energy and protein metabolism, and glucose kinetics of female crossbred Etawah goats, using 12 weaned (BW $14.0{\pm}2.0kg$), 12 late pregnant (BW $27.8{\pm}1.8kg$) and 12 first lactation does (BW $25.0{\pm}5.0kg$). Each class of animal was randomly allotted into 3 dietary treatment groups R1, R2 and R3, that received 100%, 85%, and 70% of ad libitum feed. The rations offered were pellets containing 21.8% CP and 19.3 MJ GE/kg, except for the lactating does who received pellets (17.2% CP and 18.9 MJ GE/kg) and fresh Penisetum purpureum grass. Energy and nitrogen balance studies were conducted during a two-week trial. Daily heat production (HP, estimated by the carbon dioxide entry rate technique), glucose pool and flux were measured. Equations were found for metabolizable energy (ME) and protein intake (IP) requirements for growing goats: ME (MJ/d)=1.87+0.55 RE-0.001 ADG+0.044 RP $(R^2=0.89)$ and IP (g/d)=48.47+2.99 RE+0.029 ADG+0.79 RP $(R^2=0.90)$; for pregnant does: ME (MJ/d)=5.92+0.96 RE-0.002 ADG+0.003 RP $(R^2=0.99)$ and IP (g/d)=58.34+5.41 RE+0.625 ADG-0.30 RP $(R^2=0.98)$; and for lactating does: ME (MJ/d)=4.23+0.713 RE+0.003 ADG+0.006 RP+0.002 MY $(R^2=0.86)$; IP (g/d)=84.05-5.36 RE+0.055 ADG-0.16 RP+0.068 MY $(R^2=0.45)$, where RE is retained energy (MJ/d), ADG is average daily gain in weight (g/d), RP is retained protein (g/d) and MY is milk yield (ml/d). ME and IP requirements for maintenance for growing goats were 0.46 MJ/d.kg $BW^{0.75}$ and 7.43 g/d.kg $BW^{0.75}$, respectively. Values for the pregnant and lactating does were in the same order, 0.55 MJ/d.kg $BW^{0.75}$ and 11.7 g/d.kg $BW^{0.75}$, and 0.50 MJ/d.kg $BW^{0.75}$ and 10.8 g/d.kg $BW^{0.75}$, respectively. Milk protein ranged from 3.06 to 3.5% and milk fat averaged 5.2%. Glucose metabolism in Etawah crossbred female goat is active, but glucose flux is low compared to temperate ruminant breeds which may implicate its role to support production.

Forage Intake and Nutrient Requirements of Fallow Weaner Deer in Southern Australia

  • Ru, Y.J.;Fischer, M.;Glatz, P.C.;Wyatt, S.;Swanson, K.;Falkenberg, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.685-692
    • /
    • 2003
  • Information on nutrient requirements and forage intake of fallow weaner deer is required for the development of feeding strategies during the year. An experiment was conducted in which 60 fallow weaner deer (grazing on medic and ryegrass based pastures) were supplemented with a concentrated diet at three levels. The diet contained 2% minerals, 30% lupin and 68% barley grain. Twelve deer from each treatment were dosed with commercial alkane capsules in May, June, July, September and October to predict nutrient intake. The relationships between body weight gain and intake of metabolisable energy and crude protein were established using a general linear models analysis. Dry matter intake from pastures ranged from 0.137 kg to 0.304 kg in May and June and increased to 1.2 kg in October. Nutrient intake from pastures was strongly influenced by amount of supplementary feed and gender. Digestible energy intake from pastures was 1.3, 3.8 and 6.1 MJ/day higher for males than females in July, August and October, respectively. The protein and energy intake was strongly correlated with body weight gain. The energy requirement for maintenance were 7.3, 8.2, 10.2, 10.2 and 10.7 MJ DE/day and the DE required for each kg body weight gain were 19, 18, 29, 34 and 49 MJ in May, June, August and October, respectively. The protein requirement for maintenance was 12.2, 12.6, 15.0, 11.4 and $8.5g/W^{0.75}$ in May, June, July, August and October, respectively. The nutrient requirement defined from this study can be used to assist farmers to explore the possible pasture and stock management practices under southern Australian conditions. However, further research is required to develop rapid and cheap methods for estimating dry matter intake, nutritive value of pastures and to quantify the potential growth rate of fallow deer in southern Australia.

Determination of Dairy Cow Food Intake using Simulated Annealing (시뮬레이티드 어닐링을 이용한 젖소의 급이량 산정)

  • 허은영;김동원;한병성;김용준;이수영
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-450
    • /
    • 2002
  • The daily food intake for dairy cows has to be effectively controlled to breed a sound group of cows as well as to enhance the productivity of the cows. But, feed stuffs are fed in the common bulk for a group of cows in most cases despite that the individual food intake has to be varied. To obtain the feed for each cow, both the nutrient requirements and the nutrient composition of fred have to be provided in advance, which are based on the status of cows such as weigh marginal weight amount of milk, fat concentration in milk, growth and milking stages, and rough feed ratio, etc. Then, the mixed ration fur diet would be computed by the nutrient requirements constraints. However, when TMR (Total Mixed Ration) is conventionally supplied for a group of cows, it is almost impossible to get an optimal feed mixed ration meeting the nutrient requirements of each individual cow since the constraints are usually conflicting and over-constrained although they are linear. Hence, addressed in this paper is a simulated annealing (SA) technique to find the food intake for dairy cows, considering the characteristics of individual or grouped cows. Appropriate parameters fur the successful working of SA are determined through preliminary experiments. The parameters include initial temperature, epoch length. cooling scheduling, and stopping criteria. In addition, a neighborhood solution generation method for the effective improvement of solutions is presented. Experimental results show that the final solution for the mixture of feed fits the rough feed ratio and some other nutrient requirements such as rough fiber, acid detergent fiber, and neutral detergent fiber, with 100 percent, while fulfilling net energy for lactating, metabolic energy, total digestible nutrients, crude protein, and undegraded intake protein within average five percent.

The Influence of Dietary Characteristics on the Milk Quantity and Quality of Riverine Buffaloes: Estimate of the Energy/Protein Requirements, for a Medium-high Production, in the First Ninety Days of Lactation

  • Terramoccia, S.;Bartocci, A.;Giovanni, S. Di;Bartocci, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.335-340
    • /
    • 2012
  • The data used came from two trials undertaken under the same climatic conditions (spring-summer). In both trials pluriparious buffaloes were utilized similar in weight, body condition score, and milk production from the previous year. From the first trial the data used was from the sub-period 23-88 DIM provided by seven animals fed ad libitum with diet A (6.69 MJ/kg DM; 158.30 g/kg of crude protein) with a forage/concentrate ratio of 48/52. From the second trial the data used was from the sub-period 33-90 DIM provided by seven animals fed ad libitum with diet B (6.63 MJ/kg DM; 179.50 g/kg of crude protein) and by seven animals fed ad libitum with diet C (5.99 MJ/kg DM; 155.40 g/kg of crude protein), each of the diets had the same forage/concentrate ratio (53/47). A significant difference was found in milk production between group B and C (13.08 vs. 11.56 kg/d, p<0.05), an intermediate production (12.10 kg/d) was noted in group A. A significant difference was found between fat (76.58 vs. 69.24 g/kg, p<0.05), protein (46.14 vs. 43.16 g/kg, p<0.05) and casein (39.94 vs. 34.98 g/kg, p<0.05) of the milk of group B with respect to group A. The milk of group C gave fat values (71.80 g/kg), protein (45.52 g/kg) and casein (39.06 g/kg) statistically equal to those of group B. The milk of groups B and C, in respect to the milk of group A, gave values of $K_{20}$ (1.77, 1.82 vs. 3.68 min, p<0.05), statistically lower and values of $A_{30}$ (48.28, 47.27 vs. 40.64 mm, p<0.05) statistically higher. Two simple linear regressions were calculated where the independent variable (x) was the daily standardized milk production, the dependent variable (y) or the daily intake of net energy or crude protein. Equation 1) NE (MJ/d) = 74.4049+2.8308${\times}$kg of normalized milk; equation 2) CP (kg/d) = 1.4507+0.1085${\times}$kg of normalized milk, both the equations were significant (p<0.05) with determination coefficients of 0.58 and 0.50 respectively. For a production of normalized milk that varies from 9 to 13 kg, the respective energy-protein concentrations fluctuate from 6.09 to 6.78 MJ/kg DM and from 148.00 to 174.46 g/kg DM.

Nutrient Requirements for Growth of Lambs under Hot Semiarid Environment

  • Karim, S.A.;Santra, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.665-671
    • /
    • 2003
  • A factorial experiment was conducted to assess nutrient utilization by growing lambs maintained on three levels each of digestible energy (high: HE, medium: ME, low: LE) and protein (high: HP, medium: MP, low: LP) in nine combinations (HEHP, HEMP, HELP, MEHP, MEMP, MELP, LEHP, LEMP, LELP). The experiment was conducted during the hot season in a semiarid location. Daily dry matter intake (DMI) was similar in all the groups in terms of unit body weight or metabolic body size. Digestibility of DM and nitrogen free extract increased (p<0.01) from low to medium and high energy regimen while the CF digestibility followed a reverse trend. The digestibility of crude protein (CP) decreased from high to medium and low protein regimens while it was similar in terms of energy variation. Nitrogen intake was higher in high followed by medium and low protein regime while fecal and urinary nitrogen loss were similar in all the treatment groups. Lambs in all the three levels of protein were in positive N balance and percent N retention was higher (p<0.01) in high followed by medium and low protein levels whereas it was similar in terms of energy variation. Initial body weight was similar in all the groups while final weight, total gain in the experiment and average daily gain (ADG) were higher in high than medium and low energy regimens. It is concluded that crossbred lambs required 75.1 g DM, 9.6 g CP, 6.3 g DCP and 711 KJ DE/kg W $^{0.75}$or 11.0 g CP/MJ DE or 7.2 g DCP/MJ DE for 93 g average daily gain in a hot semiarid environment.

Effects of Dietary Energy and Protein Levels on Growth of Egg Breeder Pullets (산란종계 육성기 사료의 에너지 및 단백질 수준이 성장에 미치는 영향)

  • 노성래;유선종;김성권;김은집;안병기;강창원
    • Korean Journal of Poultry Science
    • /
    • v.30 no.2
    • /
    • pp.73-81
    • /
    • 2003
  • This experiment was conducted to investigate the effects of dietary energy and protein levels on the growth rate of egg breeder pullets. A total of 360 Hy-Line Brown pullets aged 2 to 6 weeks (Phase I) were fed 5 rations differing in dietary protein (17, 19 and 20%) and energy (2,800, 2,950 and 3,050 kcal/kg, TMEn) leveIs for a period of 5 weeks and those aged 6 to 10 weeks (Phase II) were fed 5 rations differing in dietary protein (15, 16 and 17%) and energy (2,800, 2,900 and 3,000 kcal/kg, TMEn) levels in order to evaluate the optimum dietary energy and protein leveIs for egg breeder pullets reared in cages. Their body weight gains were significantly influenced by the dietary protein levels (P<0.05). The dietary energy levels did not greatly affect the growth performances throughout the experimental period. The low energy and protein regimen based on NRC requirement (control) was found to produce smaller pullets and lower tibia bone measurements as compared to the higher regimen groups. With the increase in dietary energy and protein levels, tibial bone strength and ash content also gradually increased (P<0.05). There were no significant differences in the flock uniformity among the treatments. These results indicate that increases in dietary energy and protein levels above the NRC requirements appeared to be more effective in obtaining the optimal growth and bone developments of egg breeder pullets reared in cage.

Structural Arrangement for Functional Requirements of Brain Recombinant 4-Aminobutyrate Aminotransferase

  • Sung, Bo-Kyung;Kim, Young-Tae
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.43-48
    • /
    • 2000
  • 4-Aminobutyrate aminotransferase is a key enzyme of the 4-aminobutyric acid shunt. It converts the neurotransmitter 4-aminobutyric acid to succinic semialdehyde. In order to study the structural and functional aspects of catalytically active Cys residues of pig brain 4-aminobutyrate aminotransferase, we purified the active form in E. coli by coproduction of thioredoxin. The structural arrangement for functional requirements of a dimeric protein using a bifunctional sultbydryl reagent was then characterized, and the spatial proximity between the essential SH groups and a cofactor (pyridoxal-5'-phosphate) binding site was determined. The bifunctional sultbydryl reagent DMDS reacted with the enzyme at the ratio of one molecule per enzyme dimer. This resulted in an approximately 50% loss of enzymatic activity. The spatial proximity of the distance between the essential SH groups and the cofactor-binding site was determined by the energy transfer measurement technique. The result (approximate 20 ${\AA}$) suggested that cross-linking of two sulfhydryl groups with DMDS is not near a PLP binding site.

  • PDF

Effect of water temperature on protein requirement of Heteropneustes fossilis (Bloch) fry as determined by nutrient deposition, hemato-biochemical parameters and stress resistance response

  • Fatma, Shabihul;Ahmed, Imtiaz
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.1
    • /
    • pp.1.1-1.14
    • /
    • 2020
  • Background: Dietary protein requirements are dependent on a variety of factors and water temperature is one of the most important abiotic factors affecting protein requirement of fish. This study was, therefore, conducted to investigate effects of water temperature on dietary protein requirement of fry Heteropneustes fossilis which has high demand in most of the Asian markets. Methods: Quadruplicate groups of 30 fish per treatment (2.97 ± 0.65 cm; 5.11 ± 0.34 g) were fed seven isoenergetic diets (17.9 kJ g-1 gross energy; 14.99 kJ g-1 digestible energy) containing dietary protein levels ranging from 28 to 52% at two water temperatures (18 and 26 ℃). Experimental diets were fed to apparent satiation as semi-moist cakes thrice daily at 17:00, 12:00, and 17:30 h for 12 weeks. For precise information, various growth parameters, protein deposition, hematological parameters, metabolic enzymes, and stress response were analyzed, and effects of water temperature on dietary protein requirement was recommended on the basis of response from above parameters. Results: Groups held at 26 ℃ attained best growth, feed conversion, and protein deposition at 44% dietary protein indicating that temperature affected dietary protein requirement for optimum growth of H. fossilis fry and protein requirement seems to be satisfied with 44% dietary protein. Interestingly, interactive effects of both dietary protein levels and temperature were not found (P > 0.05). Fish reared at 18 ℃ had comparatively higher values for aspartate and alanine transferases than those reared at 26 ℃ water temperature which exhibited normal physiological value for these enzymes indicating that body metabolism was normal at this temperature. Hematological parameters also followed same pattern. Furthermore, fish reared at 26 ℃ water temperature exhibited more resistant to thermal stress (P < 0.05). The 95% maximum plateau of protein deposition data using second-degree polynomial regression analyses exhibited dietary protein requirement of fry H. fossilis between 40.8 and 41.8% of diet at 26 ℃ water temperature. The recommended range of dietary protein level and protein/digestible energy ratio for fry H. fossilis is 40.8-41.8% and 27.21-27.88 mg protein kJ-1 digestible energy, respectively. Conclusions: Information developed is of high significance for optimizing growth potential by making better utilization of nutrient at 26 ℃ and, to develop effective management strategies for mass culture of this highly preferred fish species.

Chemical Compositions and Biological Feeding Values of Spirutina platensis Grown at Swine-Waste Effluent (돈분폐액 배양 Spirulina platensis의 화학적 조성 및 생물학적 사료가치)

  • 오상집;정연종;이준엽;이현용
    • Korean Journal of Poultry Science
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 1995
  • To evaluate the nutritive values of outdoor mass cultivated Spirulina platensis both chemical analysis and bioassay were carried out using adult cockerels. Blue-green algae, Spirulina platensis contained about 71g /l00g DM of crude protein with balanced amino acid profiles although methionine is liable to he limiting to animals. Compared to fish meal, calcium content and calcium : phosphorus ratio of the Spirulina were not suitable in terms of animal requirements. Reasonable amount of y-linolenic acid(C18: 3 $\omega$6) in Spirulina platensis draws a clinical attention due to its historically recognized pharmacotheraputic functions. Metabolizable energy contents of Spirulina were 3.67 and 3.11 mcal /kg DM for TMEn and AMFn, respectively, which therefore, can he a reliable energy source for poultry. True amino acid availabilities of essential amino acids of Spirulina platensis were higher than 90% for poultry, which is better than comparative ingredient like fish meal. Overall data from both chemical analysis and bioassay demonstrated that the Spirulina platensis could he a favorable protein feedstuffs for poultry.

  • PDF