• Title/Summary/Keyword: Energy-limited environment

Search Result 336, Processing Time 0.029 seconds

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

Determination Method of TTL for Improving Energy Efficiency of Wormhole Attack Defense Mechanism in WSN (무선 센서 네트워크에서 웜홀 공격 방어기법의 에너지 효율향상을 위한 TTL 결정 기법)

  • Lee, Sun-Ho;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.149-155
    • /
    • 2009
  • Attacks in wireless sensor networks (WSN), are similar to the attacks in ad-hoc networks because there are deployed on a wireless environment. However existing security mechanism cannot apply to WSN, because it has limited resource and hostile environment. One of the typical attack in WSN is setting up wrong route that using wormhole. To overcome this threat, Ji-Hoon Yun et al. proposed WODEM (WOrmhole attack DEfense Mechanism) which can detect and counter with wormhole. In this scheme, it can detect and counter with wormhole attacks by comparing hop count and initial TTL (Time To Live) which is pre-defined. The selection of a initial TTL is important since it can provide a tradeoff between detection ability ratio and energy consumption. In this paper, we proposed a fuzzy rule-based system for TTL determination that can conserve energy, while it provides sufficient detection ratio in wormhole attack.

New Practical and Eco-friendly Recycling method of FRP Boats (FRP선박의 재처리시스템과 활용성 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.181-186
    • /
    • 2007
  • Despite of environmental problems(safety hazards), mechanical recycling of FRP boats, which involves shredding and grinding of the scrap FRP in a new product. is one of the simpler and more technically proven methods than incineration or reclamation ones. Because FRP is made up of reinforced fiber glass, it is very difficult to break into pieces. It also occurs secondary problem such as air pollution and unacceptable shredding noise level. The another urgent problem which is a serious barrier to FRP recycling is very limited reusable applications. This study is to propose a new method which is efficient and environment friendly waste FRP regenerating system. And it also have shown the polymer cement and fiber-reinforced concrete applications with the waste FRP.

  • PDF

Developing Advanced Total Recycling Method of FRP Boats (FRP선박의 일괄 재처리 방법의 개선)

  • Lee, Seung Hee;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Since 1990s, the major recycling methods for mechanical recycling of FRP(Fiber Reinforced Plastics)boats has involved shredding and grinding of the scrap FRP in a new recycled product. But still it leads to secondary problem such as air pollution, unacceptable shredding noise level and few limited applications. This study is to propose a newly advanced method which is more efficient and environment friendly waste FRP regenerating system. As extracting FRP layer and making the recycled fiber for recycled-fiber reinforced concrete(RFRC) from waste FRP, the recycling process has some merits in a sense of the recycling energy and the environmental effects. In this study, for those tasks, spectro-chemical differentiation method and coloring water-soluble dye treatment makes the roving layer more distinguishable photophysically. Also that has remarkably reduced safety hazards and energy. Using the mechanical properties of polymers and composite, FRP with the orthotropic and laminated plastic structure has been easily separated in the new extracting system. Also the new method has introduced five kind of separating manuals for the some different compositions of FRP boats. The roving fiber of laminated glass-fiber layer is as good as the polyvinyl fiber which is cost-high commercial fiber to increasing strength of concrete products. The early study has shown the effectiveness of laminated glass-fiber layer which also is chemical-resistant due to the resin coating. These results imply that more efficient and environment friendly recycled glass fiber can be better applied to the fiber reinforced concrete(FRC) substitute and this study also has shown wide concrete applications with RFRC from the waste FRP boat.

Developing An Extracting Method of Laminated Glass-Fiber for Waste FRP Boats Regenerating (폐FRP 선박의 재자원화를 위한 유리면포 추출장치 개발)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.50-54
    • /
    • 2008
  • There are several basic classes of recycling methods for FRP boats. The main one is 'Mechanical recycling' which involves shredding and grinding of the scrap FRP in a new product. That is one of the simpler and more technically proven methods. It recently has been reported that FRP can be recycled by separating into layers instead of crushing into powder. Many researchers should be more interested in these mechanical recycling for the eligibility. Nevertheless, because resins is very useful renewable energy, most of waste FRP regenerating methods depend on incineration (reclamation) or thermal recycling (pyrolysis). FRP is made up of laminated glass- fiber (roving cloth layer) which is also very unlikely to break into each layer. If there is an extracting method which is efficient and environment friendly removing glass fiber from waste FRP, it should also solve the another urgent problem. Laminated glass-fiber which is very limited renewable, is a serious barrier to wast FRP boat regenerating. This study is to propose a new extracting method which is efficient and environment friendly waste FRP regenerating system. And it should be applied to renewable energy applications with the waste resins of FRP. Also recycling glass fiber obtained by the separation of the roving layer from waste FRP will be consider to be useful for concrete products or structures.

  • PDF

Advanced FEC Scheme Considering Energy and Link-Quality for Solar-Powered WSNs (태양 에너지 기반 무선 센서 네트워크에서 에너지와 링크 품질을 고려한 향상된 FEC 기법)

  • Gil, Gun Wook;Kang, Minjae;Noh, Dong Kun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.4
    • /
    • pp.83-88
    • /
    • 2020
  • In Solar-powered wireless sensor networks(SP-WSN), the battery is periodically charged, so the best use of harvested energy is more important, rather than minimizing energy consumption. Meanwhile, as is well known, the reliability of communication between sensor nodes is very limited due to the resource-constraint of sensor nodes. In this paper, we propose an advanced FEC (forward error correction) scheme which can give SP-WSN more reliability for communication. Firstly, the proposed scheme uses energy modeling to calculate the amount of surplus energy which can be utilized for extra operations, and then determines the number of additional parity bits according to this amount of surplus energy. At the same time, link quality modeling calculates the optimal parity bits for error recovery in the current data communication environment. Finally, by considering these two parity sizes, it is possible to determine the optimal parity size that can maximize the data reliability without affecting the node black out. Performance verification was performed by comparing the amount of data collected at the sink and the number of outage nodes with other schemes.

Clustering Algorithm for Efficient Energy Consumption in Wireless Sensor Networks (무선 센서 네트워크에서 효율적인 에너지 사용을 위한 클러스터링 알고리즘)

  • Na, Sung-Won;Choi, Seung-Kwon;Lee, Tae-Woo;Cho, Yong-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.49-59
    • /
    • 2014
  • Recently, wireless sensor networks(WSNs) are widely used for intrusion detection and ecology, environment, atmosphere, industry, traffic, fire monitoring. In this paper, an energy efficient clustering algorithm is proposed. The proposed algorithm forms clusters uniformly by selecting cluster head that optimally located based on receiving power. Besides, proposed algorithm can induce uniform energy consumption regardless of location of nodes by multi-hop transmission and MST formation with limited maximum depth. Through the above, proposed algorithm elongates network life time, reduces energy consumption of nodes and induces fair energy consumption compared to conventional LEACH and HEED. The results of simulation show that the proposed clustering algorithm elongates network life time through fair energy consumption.

Distributed Computing Models for Wireless Sensor Networks (무선 센서 네트워크에서의 분산 컴퓨팅 모델)

  • Park, Chongmyung;Lee, Chungsan;Jo, Youngtae;Jung, Inbum
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.958-966
    • /
    • 2014
  • Wireless sensor networks offer a distributed processing environment. Many sensor nodes are deployed in fields that have limited resources such as computing power, network bandwidth, and electric power. The sensor nodes construct their own networks automatically, and the collected data are sent to the sink node. In these traditional wireless sensor networks, network congestion due to packet flooding through the networks shortens the network life time. Clustering or in-network technologies help reduce packet flooding in the networks. Many studies have been focused on saving energy in the sensor nodes because the limited available power leads to an important problem of extending the operation of sensor networks as long as possible. However, we focus on the execution time because clustering and local distributed processing already contribute to saving energy by local decision-making. In this paper, we present a cooperative processing model based on the processing timeline. Our processing model includes validation of the processing, prediction of the total execution time, and determination of the optimal number of processing nodes for distributed processing in wireless sensor networks. The experiments demonstrate the accuracy of the proposed model, and a case study shows that our model can be used for the distributed application.

An Improved Decoding Scheme of Hamming Codes using Soft Values (소프트 값을 이용한 해밍 부호의 개선된 복호 방식)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • In this paper, we propose a syndrome decoding scheme that can correct two errors for single error correcting Hamming codes within a code length. The decoding scheme proposed in this paper has the advantage of significantly improving the error rate performance compared to the decoder complexity by correcting multiple errors without substantially increasing the decoding complexity. It is suitable for applications in which the energy use of encoder/decoder is extremely limited and the low error rate performance is required, such as IoT communications and molecular communications. In order to verify the improvement of the error rate performance of the Hamming code with the proposed decoding scheme, we performed simulation on Hamming codes with short code length in the AWGN and BPSK modulation environments. As a result, compared with the conventional decoding method, the proposed decoding scheme showed performance improvement of about 1.1 ~ 1.2[dB] regardless of the code length of the Hamming code.

The Adaptation of Ginseng Production of Semi-arid Environments : The Example of British Columbia, Canada (강우량이 극히 적은 여건에서의 인삼재배의 순응 : 캐나다 브리티쉬 콜롬비아의 실례)

  • Bailey, W.G.
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.297-309
    • /
    • 1990
  • Ginseng is renowned for both its medicinal and herbal uses and successful cultivation of Panax ginseng in Asia and Panax Vtiinvtiefolilim in North America has until recently taken place in the native geographical ranges of the plants. As a consequence of the potential high capital return and anticipated increases in consumer consumption, commercial cultivation of American ginseng now occurs well outside the native range of the plant in North America. In fact, the region of greatest expansion of cultivation is in the semi-arid interior region of British Columbia, Canada. Linked with this expansion is the potential domination of the ginseng industry by agricultural corporations. In the interior of British Columbia, the native decidous forest environment of eastern North America is simulated with elevated polypropylene shade and a sllrface covering of straw mulch. The architecture of these environments is designed to permit maximillm machinery useage and to minimize labour requirements. Further, with only a four-year growth cycle, plant densities in the gardens are high. In this hot, semiarid environment, producers believe they have a competitive advantage over other regions in North America because of the low precipitation rates. This helps to minimize atmospheric humidity such that the conditions for fungal disease development are reduced. If soil moisture levels become limited, supplemental water can be provided by irrigation. The nature of the radiation and energy balance regimes of the shade and much environment promotes high soil moistilre levels. Also, the modified environment reduces soil heating. This can result in an aerial environment for the plant that is stressful and a rooting zone environment that is sub-optimal. The challenge of further refining the man modified environment for enhanced plant growth and health still remains.

  • PDF