• Title/Summary/Keyword: Energy-efficient Design

Search Result 1,003, Processing Time 0.028 seconds

Application of Energy-Efficient Distillation System in Ethanol Process (에너지 절약형 증류시스템의 에탄올 제조공정에의 응용)

  • Lee, Moon Yong;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.892-897
    • /
    • 2008
  • A new ethanol dehydration process utilizing a thermally coupled distillation column is proposed to reduce the energy requirement of the existing dehydration processes. An entrainer of benzene is used in the proposed system having the column profile similar to the equilibrium composition profile for the maximum distillation column efficiency, and the feed composition is arranged to close to the boundary of different distillation regions. It is found that the proposed distillation system gives some 18% of energy saving over the existing process. In addition, design guidelines are suggested for other azeotropic distillation process.

Development of Energy Optimized Geometry Using BIM for Super Tall Office Building in Early Design Stages (BIM을 이용한 건축물 초기 디자인 단계에서 초고층 업무용 건물의 최적 에너지 형태개발)

  • Ryu, Han-Soo;Kim, In-Han;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2011
  • There are many researches to make low-energy building. Lots of them focus on facility systems and insulation performance of building materials. However, not only systematic solutions but also approaches in early design stages are important to reduce energy consumption. Using BIM(Building Information Modelling) is considered as an effective and efficient way to simulate building energy and decide alternatives than traditional energy simulation because BIM based energy simulation makes to reduce much time for energy modeling. This study focuses on development of optimized geometry for super tall office buildings in Seoul, Korea. Specifically, length to width ratio and building orientation are main topics of this study because these two topics are the most basic and preceding factors deciding mass design. In this study, Revit MEP 2011 and Ecotect Analysis 2011 are used to make case models and calculate energy load in early design stages. Energy properties of material abide by Korean Standards for Energy Conservation in Building, Korean Guideline for Energy Conservation in Public Office and ASHRAE Standard in USA. This study presents best length to width ratio of plan and optimized orientation by evaluating the case models. Furthermore, this study suggests what should be considered for each case to decrease energy load.

Design of Optimal Kinetic Energy Harvester Using Double Pendulum (이중진자를 이용한 최적의 운동에너지 하베스터 설계)

  • Lee, Chibum;Park, Hee Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.619-624
    • /
    • 2015
  • Owing to miniaturization and low-power electronics, mobile, implanted, and wearable devices have become the main trends of electronics during the past decade. There has been much research regarding energy harvesting to achieve battery-free or self-powered devices. The optimal design problems of a double-pendulum kinetic-energy harvester from human motion are studied in this paper. For the given form factor, the weight of the harvester, and the known human excitation, the optimal design problem is solved using a dynamic non-linear double-pendulum model and an electric generator. The average electrical power was selected as the performance index for the given time period. A double-pendulum harvester was proven to be more efficient than a single-pendulum harvester when the appropriate parameters were used.

A Comparative Assessment of Hydrogen Facility Installation for Net-Zero Energy District Planning (제로에너지단지의 적정 수소 활용 규모 및 운용방식에 관한 연구)

  • Junoh Kim;Chulhee Kim;Soyeon Chu
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • This study aims to evaluate the optimal size of the hydrogen facility to be installed in a zero-energy district in terms of load matching and facility efficiency. A mismatch between energy generation and consumption is a common occurrence in zero-energy districts. This mismatch adversely effects the energy grid. However, using an energy carrier such as hydrogen can solve this problem. To determine the optimal size of hydrogen fuel cells to be used on-site, simulation of hydrogen installation is required at both district-and building- levels. Each case had four operating schedules. Therefore, we evaluated eight scenarios in terms of load matching, heat loss, and facility operational efficiency. The results indicate that district-level installation of hydrogen facilities enables more efficient energy use. Additionally, based on the proposed model, we can calculate the optimal size of the hydrogen facility.

An Energy-Efficient Multicast Algorithm with Maximum Network Throughput in Multi-hop Wireless Networks

  • Jiang, Dingde;Xu, Zhengzheng;Li, Wenpan;Yao, Chunping;Lv, Zhihan;Li, Tao
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.713-724
    • /
    • 2016
  • Energy consumption has become a main problem of sustainable development in communication networks and how to communicate with high energy efficiency is a significant topic that researchers and network operators commonly concern. In this paper, an energy-efficient multicast algorithm in multi-hop wireless networks is proposed aiming at new generation wireless communications. Traditional multi-hop wireless network design only considers either network efficiency or minimum energy consumption of networks, but rarely the maximum energy efficiency of networks. Different from previous methods, the paper targets maximizing energy efficiency of networks. In order to get optimal energy efficiency to build network multicast, our proposed method tries to maximize network throughput and minimize networks' energy consumption by exploiting network coding and sleeping scheme. Simulation results show that the proposed algorithm has better energy efficiency and performance improvements compared with existing methods.

First-Principles Calculations for Design of Efficient Electrocatalysts (제일원리 계산을 활용한 전기화학 촉매 연구)

  • Kim, Dong Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.393-400
    • /
    • 2021
  • As the recent climate problems are getting worse year after year, the demands for clean energy materials have highly increased in modern society. However, the candidate material classes for clean energy expand rapidly and the outcomes are too complex to be interpreted at laboratory scale (e.g., multicomponent materials). In order to overcome these issues, the first-principles calculations are becoming attractive in the field of material science. The calculations can be performed rapidly using virtual environments without physical limitations in a vast candidate pool, and theory can address the origin of activity through the calculations of electronic structure of materials, even if the structure of material is too complex. Therefore, in terms of the latest trends, we report academic progress related to the first-principles calculations for design of efficient electrocatalysts. The basic background for theory and specific research examples are reported together with the perspective on the design of novel materials using first-principles calculations.

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

An Analysis of Important Factors for Energy Efficient Healthcare Facilities on Experts' Survey (전문가 설문조사를 통한 에너지 효율적인 병원시설을 위한 중요한 영향요소의 분석)

  • Choi, Yeo-Jin;Choi, Yool
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.45-50
    • /
    • 2017
  • Purpose: There have been more researches focused on eco-friendly construction practices in order to save energy consumed and these practices have been extensively applied for constructing buildings. However, researches on energy consumption saving and efficiency for hospital facilities have been still insufficient. This research aims to draw factors that affect energy efficiency of hospital buildings through literature reviews and perform an expert-survey using AHP(Analytical Hierarchy Process) method in order to analyze the importances and priorities of these energy efficient factors. Method: Using the AHP method, this paper suggests the importances and priorities of factors to affect energy efficiency in hospital buildings. The survey of experts at a architectural design and a construction management companies was conducted via e-mail and mail. Result: As a result, factors of window and door, insulation, ventilation, and natural lighting turned out relatively important as respectively 0.104, 0.102, 0.101, and 0.095 n the energy efficiency in hospital buildings, while factors of artificial lighting, geothermal, solar heat, and control did unimportant as 0.027, 0.033, 0.043, and 0.053.

Circuit Component Requirements for Energy Scavenging System (Energy Scavenging 시스템을 위한 회로의 특성)

  • Kang, Sung-Muk;Park, Kyung-Jin;Kim, Ho-Seong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1790-1795
    • /
    • 2008
  • Energy scavenging is a technique that converts ambient energy, for example, vibration and light, to electrical energy in order to supply power to low power electronic devices such as ubiquitous sensors. In this paper, we propose an optimal operation condition of power delivery circuit and design strategy for energy scavenging system in which the generated power is order of microwatt and, consequently, efficient handling of power is critical. We also propose that high data transmission rate is more realistic optimal design objective rather than high energy efficiency. It is shown that disconnection of load from the storage capacitor right after data transmission reduces energy wasting and that optimal value of storage capacitor can be determined at this condition. The feasibility of our propose is proved by experiments and we believe that the proposed design strategy will promote the application of piezoelectric micropower generator to the ubiquitous sensor networks.

Optimization of energy level alignment for efficient organic photovoltaics (에너지 준위 접합 최적화를 통한 유기태양전지 효율 향상법)

  • Lee, Hyunbok
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.12-16
    • /
    • 2015
  • Organic photovoltaics (OPVs) have attracted significant interest in an interdisciplinary research field for the decades as a next-generation photovoltaic device due to their unique advantages. One of requirements for OPVs having high power conversion efficiency is the favorable energy level alignment between the electrode/organic and organic/organic interfaces to manage the exciton dissociation and improve the charge transport. In this review, strategies to enhance the OPV performance by controlling the energy level alignment are discussed. The insertion of an exciton blocking layer leads to the efficient dissociation of photogenerated excitons at the donor/acceptor interface enhancing the short-circuit current density. The choice of a donor having a high ionization energy and an acceptor having a low electron affinity increases the open-circuit voltage. The insertion of an appropriate work function modifier which reduces the charge injection barrier removes the S-kink in current density-voltage characteristics of OPVs and improves the fill factor. This review would give a valuable guide to design the efficient OPV structure.