• Title/Summary/Keyword: Energy-efficient Design

Search Result 1,005, Processing Time 0.027 seconds

Design and Implementation of A Location-based Energy-Efficient Routing Protocol using Quantity of Energy Consumed (에너지 사용량을 이용한 위치 기반 에너지 효율적인 라우팅 프로토콜 설계 및 구현)

  • Jang, You-Jin;Kim, Yong-Ki;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Recently, wireless sensor networks(WSNs) technology has been considered as one of the most critical issues in the ubiquitous computing age. The sensor nodes have limited battery power, so they should consume low energy through their operation for the long-lasting lifetime. Therefore, it is essential to use energy efficient routing protocol. For this, we propose a location-based energy-efficient routing protocol which constructs the energy efficient route by considering the quantity of Energy consumed. In addition, we propose a route reconstruction algorithm to handle the disconnection of message transmission. Finally, we show from performance analysis using TOSSIM that our protocol outperforms the existing location based routing protocols in terms of energy efficiency.

Energy-efficient Scheduling of Periodic Real-time Tasks on Heterogeneous Grid Computing Systems

  • Lee, Wan Yeon;Choi, Yun-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.78-86
    • /
    • 2017
  • In this paper, we propose an energy-efficient scheduling scheme for real-time periodic tasks on a heterogeneous Grid computing system. The Grid system consists of heterogeneous processors providing the DVFS mechanism with a finite set of discrete clock frequencies. In order to save energy consumption, the proposed scheduling scheme assigns each real-time task to a processor with the least energy increment. Also the scheme activates a part of all available processors with unused processors powered off. Evaluation shows that the proposed scheme saves up to 70% energy consumption of the previous method.

EERA: ENHANCED EFFICIENT ROUTING ALGORITHM FOR MOBILE SENSOR NETWORK

  • Hemalatha, S;Raj, E.George Dharma Prakash
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.389-395
    • /
    • 2022
  • A Mobile Sensor Network is widely used in real time applications. A critical need in Mobile Sensor Network is to achieve energy efficiency during routing as the sensor nodes have scarce energy resource. The nodes' mobility in MWSN poses a challenge to design an energy efficient routing protocol. Clustering helps to achieve energy efficiency by reducing the organization complexity overhead of the network which is proportional to the number of nodes in the network. This paper proposes"EERA: Energy Efficient Routing Algorithm for Mobile Sensor Network" is divided into five phases. 1, Cluster Formation 2.Cluster head and Transmission head selection 3.Path Establishment / Route discovery and 4,Data Transmission. Experimental Analysis has been done and is found that the proposed method performs better than the existing method with respect to four parameters.

Efficient Energy Management for Shared Solar-powered Sensor System (공유형 태양 에너지 기반 센서 시스템을 위한 효율적인 에너지 관리 기법)

  • Noh, Dong-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.531-534
    • /
    • 2010
  • In this paper, we introduce an efficient energy management using a notion of virtual energy system for shared solar-powered sensor network. Virtual energy system is an abstraction that allows sensor network applications on a node to reserve their own fractions of the shared solar cell and the shared rechargeable battery, hence achieving logically partition of a shared renewable power source with no change in design and implementation. Our results show that our design and implementation are reliable, lightweight and efficient, allowing proper isolation of energy consumption among applications.

  • PDF

Sensitivity Analysis of Building Envelope of Non-Dwelling Buildings (비주거 건축물의 외피요소에 대한 민감도 분석)

  • Kim, Kyung-Ah;Park, Jin-Seo;Yu, Ki-Hyung;Moon, Hyeun-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • The ECO2 building energy simulation program is used on the assessment project for building energy certification of non-dwelling buildings in Korea. In the design of energy efficient buildings, it is beneficial to identify the most important design parameters in oder to more efficiently develop alternative design solutions or reach optimized design solutions. The sensitivity analyses will be used at a reasonable early stage of the building design process, where it is still possible to influence the most important design parameters. In this study, the sensitivity analysis is focused on building envelope parameters such as U-values, SHGC and Wall-window ration.

Development of High Efficiency Boiler with High Safety (안전성이 높은 고효율 보일러 개발에 관한 연구)

  • Jung, Won
    • Journal of Applied Reliability
    • /
    • v.11 no.1
    • /
    • pp.83-95
    • /
    • 2011
  • Boiler efficiency has a direct impact on energy consumptions, which results in lower cost of operations and services. Usually high efficiency boilers are regarded as boilers with an efficiency of greater than 90%. However, it is likely that normal boilers are running at significantly lower efficiencies than this. This paper presents a process of developing a highly efficient energy consumption boiler. We adopt direct heat method while normal boilers are designed as indirect heat method. The submerged combustion method is considered to design for very high efficient boiler.

Medium Access Control with Dynamic Frame Length in Wireless Sensor Networks

  • Yoo, Dae-Suk;Choi, Seung-Sik
    • Journal of Information Processing Systems
    • /
    • v.6 no.4
    • /
    • pp.501-510
    • /
    • 2010
  • Wireless sensor networks consist of sensor nodes which are expected to be battery-powered and are hard to replace or recharge. Thus, reducing the energy consumption of sensor nodes is an important design consideration in wireless sensor networks. For the implementation of an energy-efficient MAC protocol, a Sensor-MAC based on the IEEE 802.11 protocol, which has energy efficient scheduling, has been proposed. In this paper, we propose a Dynamic S-MAC that adapts dynamically to the network-traffic state. The dynamic S-MAC protocol improves the energy consumption of the S-MAC by changing the frame length according to the network-traffic state. Using an NS-2 Simulator, we compare the performance of the Dynamic S-MAC with that of the S-MAC protocol.

Heterogeneity-aware Energy-efficient Clustering (HEC) Technique for WSNs

  • Sharma, Sukhwinder;Bansal, Rakesh Kumar;Bansal, Savina
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1866-1888
    • /
    • 2017
  • Efficient energy consumption in WSN is one of the key design issues for improving network stability period. In this paper, we propose a new Heterogeneity-aware Energy-efficient Clustering (HEC) technique which considers two types of heterogeneity - network lifetime and of sensor nodes. Selection of cluster head nodes is done based on the three network lifetime phases: only advanced nodes are allowed to become cluster heads in the initial phase; in the second active phase all nodes are allowed to participate in cluster head selection process with equal probability, and in the last dying out phase, clustering is relaxed by allowing direct transmission. Simulation-based performance analysis of the proposed technique as compared to other relevant techniques shows that HEC achieves longer stable region, improved throughput, and better energy dissipation owing to judicious consumption of additional energy of advanced nodes. On an average, the improvement observed for stability period over LEACH, SEP, FAIR and HEC- with SEP protocols is around 65%, 30%, 15% and 17% respectively. Further, the scalability of proposed technique is tested by varying the field size and number of sensing nodes. The results obtained are found to be quite optimistic. The impact of energy heterogeneity has also been assessed and it is found to improve the stability period though only upto a certain extent.

An Energy Efficient Localized Topology Control Algorithm for Wireless Multihop Networks

  • Shang, Dezhong;Zhang, Baoxian;Yao, Zheng;Li, Cheng
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.371-377
    • /
    • 2014
  • Localized topology control is attractive for obtaining reduced network graphs with desirable features such as sparser connectivity and reduced transmit powers. In this paper, we focus on studying how to prolong network lifetime in the context of localized topology control for wireless multi-hop networks. For this purpose, we propose an energy efficient localized topology control algorithm. In our algorithm, each node is required to maintain its one-hop neighborhood topology. In order to achieve long network lifetime, we introduce a new metric for characterizing the energy criticality status of each link in the network. Each node independently builds a local energy-efficient spanning tree for finding a reduced neighbor set while maximally avoiding using energy-critical links in its neighborhood for the local spanning tree construction. We present the detailed design description of our algorithm. The computational complexity of the proposed algorithm is deduced to be O(mlog n), where m and n represent the number of links and nodes in a node's one-hop neighborhood, respectively. Simulation results show that our algorithm significantly outperforms existing work in terms of network lifetime.

Assessment of the potential for the design of marine renewable energy systems

  • Duthoit, Maxime;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.119-166
    • /
    • 2018
  • The assessment of the potential for the design of marine renewable energy systems is reviewed and the current situation for marine renewable energy is promising. The most studied forms of marine renewable energy are ocean wind energy, ocean wave energy and tidal energy. Wind turbine generators include mostly horizontal axis type and vertical axis type. But also more exotic ideas such as a kite design. Wave energy devices consist of designs converting wave oscillations in electric power via a power take off equipment. Such equipment can take multiple forms to be more efficient. Nevertheless, the technology alone cannot be the only step towards marine renewable energy. Many other steps must be overcome: policy, environment, manpower as well as consumption habits. After reviewing the current conditions of marine renewable energy development, the authors analyzed the key factors for developing a strong marine renewable energy industry and pointed out the huge potential of marine renewable energy.