• Title/Summary/Keyword: Energy-aware

Search Result 365, Processing Time 0.022 seconds

Low-power Environmental Monitoring System for ZigBee Wireless Sensor Network

  • Alhmiedat, Tareq
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4781-4803
    • /
    • 2017
  • Environmental monitoring systems using Wireless Sensor Networks (WSNs) face the challenge of high power consumption, due to the high levels of multi-hop data communication involved. In order to overcome the issue of fast energy depletion, a proof-of-concept implementation proves that adopting a clustering algorithm in environmental monitoring applications will significantly reduce the total power consumption for environment sensor nodes. In this paper, an energy-efficient WSN-based environmental monitoring system is proposed and implemented, using eight sensor nodes deployed over an area of $1km^2$, which took place in the city of Tabuk in Saudi Arabia. The effectiveness of the proposed environmental monitoring system has been demonstrated through adopting a number of real experimental studies.

Utility-based Power Control Routing Mechanism for Energy-aware Optimization in Mobile Ad Hoc Networks

  • Min Chan-Ho;Kim Sehun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.349-352
    • /
    • 2004
  • In this paper, we propose a newly energy-efficient routing protocol, which is called Maximum Utility Routing(MUR), in mobile ad hoc networks (MANETs) so as to investigate the minimum energy and maximum lifetimes issues together. We present a utility-based framework so as to meet various incompatible constraints simultaneously and fairly. To explore this issue, we use the concepts and mathematics of microeconomics and game theory. Though simulation results, we show that our routing scheme has much better performance especially in terms of network efficiency, network lifetime, and average power consumption.

  • PDF

Design and Performance Analysis of Energy-Aware Distributed Detection Systems with Multiple Passive Sonar Sensors (다중 수동 소나 센서 기반 에너지 인식 분산탐지 체계의 설계 및 성능 분석)

  • Kim, Song-Geun;Hong, Sun-Mog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.9-21
    • /
    • 2010
  • In this paper, optimum design of distributed detection is considered for a parallel sensor network system consisting of a fusion center and multiple passive sonar nodes. Nonrandom fusion rules are employed as the fusion rules of the sensor network. For the nonrandom fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is investigated that maximizes the probability of detection under a constraint on energy consumption due to false alarms. It is also investigated through numerical experiments how signal strength, false alarm probability, and the distance between three sensor nodes affect the system detection performances.

Safety Principles in the Application of Lasers in Energy-based Aesthetic Procedures from the Nurse's Perspective

  • Kim, Youn Jeong
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.34-38
    • /
    • 2020
  • Recently, various lasers and energy-based devices (EBDs) have been widely used in aesthetic procedures. Although using lasers and energy-based aesthetic procedures presents a potential risk to doctors, nurses, and patients, aesthetic procedures tend to be performed without the necessary precautions. For injury prevention, it is essential to follow safety rules and be aware of potential accidents. Furthermore, it is important to understand the basic principles of the devices, including the different optical and electrical properties. Acquiring the exact knowledge to control a device is important for two reasons; to maintain a safer operating environment and prolong the lifespan of expensive devices. This review briefly summarizes the knowledge needed for better and safer aesthetic procedures and the proper control of aesthetic devices.

Buffer Cache Management for Low Power Consumption (저전력을 위한 버퍼 캐쉬 관리 기법)

  • Lee, Min;Seo, Eui-Seong;Lee, Joon-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.293-303
    • /
    • 2008
  • As the computing environment moves to the wireless and handheld system, the power efficiency is getting more important. That is the case especially in the embedded hand-held system and the power consumed by the memory system takes the second largest portion in overall. To save energy consumed in the memory system we can utilize low power mode of SDRAM. In the case of RDRAM, nap mode consumes less than 5% of the power consumed in active or standby mode. However hardware controller itself can't use this facility efficiently unless the operating system cooperates. In this paper we focus on how to minimize the number of active units of SDRAM. The operating system allocates its physical pages so that only a few units of SDRAM need to be activated and the unnecessary SDRAM can be put into nap mode. This work can be considered as a generalized and system-wide version of PAVM(Power-Aware Virtual Memory) research. We take all the physical memory into account, especially buffer cache, which takes an half of total memory usage on average. Because of the portion of buffer cache and its importance, PAVM approach cannot be robust without taking the buffer cache into account. In this paper, we analyze the RAM usage and propose power-aware page allocation policy. Especially the pages mapped into the process' address space and the buffer cache pages are considered. The relationship and interactions of these two kinds of pages are analyzed and exploited for energy saving.

Fast Content-Aware Video Retargeting Algorithm (고속 컨텐츠 인식 동영상 리타겟팅 기법)

  • Park, Dae-Hyun;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.77-86
    • /
    • 2013
  • In this paper, we propose a fast video retargeting method which preserves the contents of a video and converts the image size. Since the conventional Seam Carving which is the well-known content-aware image retargeting technique uses the dynamic programming method, the repetitive update procedure of the accumulation energy is absolutely needed to obtain seam. The energy update procedure cannot avoid the processing time delay because of many operations by the image full-searching. By applying the proposed method, frames which have similar features in video are classified into a scene, and the first frame of a scene is resized by the modified Seam Carving where multiple seams are extracted from candidate seams to reduce the repetitive update procedure. After resizing the first frame of a scene, all continuous frames of the same scene are resized with reference to the seam information stored in the previous frame without the calculation of the accumulation energy. Therefore, although the fast processing is possible with reducing complexity and without analyzing all frames of scene, the quality of an image can be analogously maintained with an existing method. The experimental results show that the proposed method can preserve the contents of an image and can be practically applied to retarget the image on real time.

Energy-efficient Custom Topology Generation for Link-failure-aware Network-on-chip in Voltage-frequency Island Regime

  • Li, Chang-Lin;Yoo, Jae-Chern;Han, Tae Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.832-841
    • /
    • 2016
  • The voltage-frequency island (VFI) design paradigm has strong potential for achieving high energy efficiency in communication centric manycore system-on-chip (SoC) design called network-on-chip (NoC). However, because of the diminished scaling of wire-dimension and supply voltage as well as threshold voltage in modern CMOS technology, the vulnerability to link failure in VFI NoC is becoming a crucial challenge. In this paper, we propose an energy-optimized topology generation technique for VFI NoC to cope with permanent link failures. Based on the energy consumption model, we exploit the on-chip communication traffic patterns and characteristics of link failures in the early design stage to accommodate diverse applications and architectures. Experimental results using a number of multimedia application benchmarks show the effectiveness of the proposed three-step custom topology generation method in terms of energy consumption and latency without any degradation in the fault coverage metric.

Energy-aware Transmission Power Control for Solar Energy Harvesting Wireless sensor system and Its Effects on Network-wide Performance (태양 에너지 기반 센서 네트워크를 위한 에너지 적응형 전송파워 조절과 그에 따른 네트워크 성능 분석)

  • Kang, Minjae;Kim, Jaeung;Yang, Heejung;Noh, Dong Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.750-753
    • /
    • 2013
  • In respect of consuming energy, the optimization is the main objective in the solar energy harvesting sensor system (while battery-based sensor system aims at the minimization), due to the periodicity of solar energy. Aimed at the optimization of the network topology, we suggest 3-level transmission power control algorithm of which level is determined by the amount of residual energy on the rechargeable battery. Additionally, we experiment the effects of our scheme on network-wide performance such as the latency and the duty-cycle, and verify that our scheme shows the best performance in most of the metrics, compared to the schemes with fixed transmission power.

  • PDF

A Study on Energy Use Behavior according to Energy Use Awareness of Apartment Residents (공동주택 거주자의 에너지사용의식에 따른 에너지사용행동 특성분석)

  • Jung, Su-Jin;Han, Jeong-Won
    • Journal of the Korean housing association
    • /
    • v.24 no.3
    • /
    • pp.37-44
    • /
    • 2013
  • As household energy consumption has increased, serious environmental problems, such as resource depletion and global warming, are becoming global issues. It is essential to conduct the energy use of residents living in apartments in order to come up with alternative solutions for energy savings. Therefore, this study examined the energy use awareness of apartment residents and their energy use behavior by various types of awareness. To understand their energy use behavior according to the awareness of the subjects, the energy awareness dimension was created with five factors and they were subject to a cluster analysis; then, the subjects were categorized into three groups. Finally, the difference of energy use behavior was examined by groups of energy awareness. G1 represents the group that is indifferent to energy savings and believes that convenience is an important factor. Also, with respect to energy use behavior, this group tends to pursue convenience. G2 is the group that is conscious of energy use costs thereby enduring some inconvenience, and shows savings behavior in daily life and household affairs. Although, G3 is very aware of the significance for the necessity of energy saving, their energy saving behavior is relatively negative. Regarding these different characteristics of each resident group in their energy saving awareness and behaviors, diverse methods and promotion in energy education are required. Furthermore, an effective energy policy should be established based on the understanding of energy consumption.