• Title/Summary/Keyword: Energy-aware

Search Result 365, Processing Time 0.025 seconds

A Robust Transport Protocol Based on Intra-Cluster Node Density for Wireless Sensor Networks (무선 센서 네트워크를 위한 클러스터 내 노드 밀도 기반 트랜스포트 프로토콜)

  • Baek, Cheolheon;Moh, Sangman
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.381-390
    • /
    • 2015
  • The efficient design of a transport protocol contributes to energy conservation as well as performance improvement in wireless sensor networks (WSNs). In this paper, a node-density-aware transport protocol (NDTP) for intra-cluster transmissions in WSNs for monitoring physical attributes is proposed, which takes node density into account to mitigate congestion in intra-cluster transmissions. In the proposed NDTP, the maximum active time and queue length of cluster heads are restricted to reduce energy consumption. This is mainly because cluster heads do more works and consume more energy than normal sensor nodes. According to the performance evaluation results, the proposed NDTP outperforms the conventional protocol remarkably in terms of network lifetime, congestion frequency, and packet error rate.

A Study on Simulation Methodology for Energy Consumption of Complex Unit Apartment Housings (단지 규모 주택의 에너지 사용량 시뮬레이션 방법론에 관한 기초연구)

  • Kim, Min-Hwan;Nam, Hyun-Jin;Kim, Dong-Ho;Yook, In-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.931-936
    • /
    • 2008
  • The need for urban-scale energy simulation is increasing as the world is aware of urgency to decrease $CO_2$ emission. As a bridge of building energy simulation and that of urban, this paper presents a case study to examine the effect of changing resolution of a model in case of complex apartment unit. Also it suggests a modeling strategy to correct differences caused by simplification of the model and evaluate the extent of its use.

  • PDF

CREEC: Chain Routing with Even Energy Consumption

  • Shin, Ji-Soo;Suh, Chang-Jin
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.17-25
    • /
    • 2011
  • A convergecast is a popular routing scheme in wireless sensor networks (WSNs) in which every sensor node periodically forwards measured data along configured routing paths to a base station (BS). Prolonging lifetimes in energy-limited WSNs is an important issue because the lifetime of a WSN influences on its quality and price. Low-energy adaptive clustering hierarchy (LEACH) was the first attempt at solving this lifetime problem in convergecast WSNs, and it was followed by other solutions including power efficient gathering in sensor information systems (PEGASIS) and power efficient data gathering and aggregation protocol (PEDAP). Our solution-chain routing with even energy consumption (CREEC)-solves this problem by achieving longer average lifetimes using two strategies: i) Maximizing the fairness of energy distribution at every sensor node and ii) running a feedback mechanism that utilizes a preliminary simulation of energy consumption to save energy for depleted Sensor nodes. Simulation results confirm that CREEC outperforms all previous solutions such as LEACH, PEGASIS, PEDAP, and PEDAP-power aware (PA) with respect to the first node death and the average lifetime. CREEC performs very well at all WSN sizes, BS distances and battery capacities with an increased convergecast delay.

Simulation of YUV-Aware Instructions for High-Performance, Low-Power Embedded Video Processors (고성능, 저전력 임베디드 비디오 프로세서를 위한 YUV 인식 명령어의 시뮬레이션)

  • Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.5
    • /
    • pp.252-259
    • /
    • 2007
  • With the rapid development of multimedia applications and wireless communication networks, consumer demand for video-over-wireless capability on mobile computing systems is growing rapidly. In this regard, this paper introduces YUV-aware instructions that enhance the performance and efficiency in the processing of color image and video. Traditional multimedia extensions (e.g., MMX, SSE, VIS, and AltiVec) depend solely on generic subword parallelism whereas the proposed YUV-aware instructions support parallel operations on two-packed 16-bit YUV (6-bit Y, 5-bits U, V) values in a 32-bit datapath architecture, providing greater concurrency and efficiency for color image and video processing. Moreover, the ability to reduce data format size reduces system cost. Experiment results on a representative dynamically scheduled embedded superscalar processor show that YUV-aware instructions achieve an average speedup of 3.9x over the baseline superscalar performance. This is in contrast to MMX (a representative Intel#s multimedia extension), which achieves a speedup of only 2.1x over the same baseline superscalar processor. In addition, YUV-aware instructions outperform MMX instructions in energy reduction (75.8% reduction with YUV-aware instructions, but only 54.8% reduction with MMX instructions over the baseline).

Design and Implementation of Flooding based Energy-Efficiency Routing Protocol for Wireless Sensor Network (무선 센서네트워크에서 에너지 효율을 고려한 단층기반 라우팅 프로토콜의 설계와 구현)

  • Lee, Myung-Sub;Park, Chang-Hyeon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.4
    • /
    • pp.371-378
    • /
    • 2010
  • In this paper, we propose a new energy-efficient routing algorithm for sensor networks that selects a least energy consuming path among the paths formed by node with highest remaining energy and provides long network lifetime and uniform energy consumption by nodes. The pair distribution of the energy consumption over all the possible routes to the base station is one of the design objectives. Also, an alternate route search mechanism is proposed to cope with the situation in which no routing information is available due to lack of remaining energy of the neighboring nodes. Simulation results show that our algorithm extends the network lifetime and enhances the network reliability by maintaining relatively uniform remaining energy distribution among sensor nodes.

Forest Biomass Utilization for Energy Based on Scientifically Grounded and Orthodox (산림바이오매스에너지에 관한 과학적 근거에 따른 통설적 접근)

  • Seung-Rok Lee;Gyu-Seong Han
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.145-174
    • /
    • 2024
  • Addressing climate change necessitates evidence-based policies grounded in science. The use of forest biomass for energy production is based on a broad scientific consensus at the international level. However, some environmental groups in South Korea are opposing this system of energy production. Through this study, the authors aim to reduce unnecessary confusion and foster an atmosphere conducive to meaningful evidence-based policies. We have classified the issue into eight categories: biological carbon cycle, carbon debt, nature-based solutions, air emissions, cascading principles and sustainability certification, forest environmental impacts, climate change litigation, and the behavior of environmental groups and public perception. Consequently, the following key points were derived: (1) the actions of some environmental groups seem to follow a similar pattern to denialist behavior that denies climate change and climate science; (2) the quality of evidence for campaigns that oppose the use of forest biomass for energy production is low, with a tendency to overgeneralize information, high uncertainty, and difficulty in finding new claims.; (3) most of the public believes that forest biomass energy is necessary, and the governments of major countries are aware of its importance. Significantly, Forest biomass for energy is based on an overwhelming level of scientific consensus recognized internationally.

Performance Analysis of Peer Aware Communications with CSMA/CA Based on Overhearing (Overhearing을 적용한 CSMA/CA 기반 대상인식통신 성능 분석)

  • Lee, Jewon;Ahn, Jae Min;Lee, Keunhyung;Park, Tae-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.251-259
    • /
    • 2014
  • In this paper, we propose Low Energy Service Discovery (LESD) protocol for common discovery mode of IEEE 802.15.8 Peer Aware Communications (PAC). In order to minimize power consumption, Basic Repetition Block (BRB) is defined. Device is able to select operating mode and synchronize other devices through it. Proposed MAC procedure is Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based on overhearing technique. Even if device has not been received response signal since transmitted request signal, it is able to discover other devices of same group through the overhearing technique. IEEE 802.15.8 PAC has required that performances of common discovery mode are presented about discovered devices during the simulation time, discovery latency and average power consumption. By considering the number of devices per group and channel environment, two scenarios are evaluated through system level simulation and the simulation results of proposed scheme are compared with CSMA/CA in same simulation conditions. As a result, proposed scheme is able to get high energy efficiency of devices as well as increase the number of discovered devices during simulation time when the longer the number of devices is distributed over a limited area.

Energy-aware Dalvik Bytecode List Scheduling Technique for Mobile Applications (모바일 어플리케이션을 위한 에너지-인식 달빅 바이트코드 리스트 스케줄링 기술)

  • Ko, Kwang Man
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.5
    • /
    • pp.151-154
    • /
    • 2014
  • An energy of applications had consumed through the complexed inter-action with operating systems, run-time environments, compiler, and applications on various mobile devices. In these days, challenged researches are studying to reduce of energy consumptions that uses energy-oriented high-level and low-level compiler techniques on mobile devices. In this paper, we intented to reduce an energy consumption of Java mobile applications that applied a list instruction scheduling for energy dissipation from dalvik bytecode which extracted Android dex files. Through this works, we can construct the optimized power and energy environment on mobile devices with the limited power supply.

A Sufferage offloading tasks method for multiple edge servers

  • Zhang, Tao;Cao, Mingfeng;Hao, Yongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3603-3618
    • /
    • 2022
  • The offloading method is important when there are multiple mobile nodes and multiple edge servers. In the environment, those mobile nodes connect with edge servers with different bandwidths, thus taking different time and energy for offloading tasks. Considering the system load of edge servers and the attributes (the number of instructions, the size of files, deadlines, and so on) of tasks, the energy-aware offloading problem becomes difficult under our mobile edge environment (MCE). Most of the past work mainly offloads tasks by judging where the job consumes less energy. But sometimes, one task needs more energy because the preferred edge servers have been overloaded. Those methods always do not pay attention to the influence of the scheduling on the future tasks. In this paper, first, we try to execute the job locally when the job costs a lower energy consumption executed on the MD. We suppose that every task is submitted to the mobile server which has the highest bandwidth efficiency. Bandwidth efficiency is defined by the sending ratio, the receiving ratio, and their related power consumption. We sort the task in the descending order of the ratio between the energy consumption executed on the mobile server node and on the MD. Then, we give a "suffrage" definition for the energy consumption executed on different mobile servers for offloading tasks. The task selects the mobile server with the largest suffrage. Simulations show that our method reduces the execution time and the related energy consumption, while keeping a lower value in the number of uncompleted tasks.

Energy efficient watchman based flooding algorithm for IoT-enabled underwater wireless sensor and actor networks

  • Draz, Umar;Ali, Tariq;Zafar, Nazir Ahmad;Alwadie, Abdullah Saeed;Irfan, Muhammad;Yasin, Sana;Ali, Amjad;Khattak, Muazzam A. Khan
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.414-426
    • /
    • 2021
  • In the task of data routing in Internet of Things enabled volatile underwater environments, providing better transmission and maximizing network communication performance are always challenging. Many network issues such as void holes and network isolation occur because of long routing distances between nodes. Void holes usually occur around the sink because nodes die early due to the high energy consumed to forward packets sent and received from other nodes. These void holes are a major challenge for I-UWSANs and cause high end-to-end delay, data packet loss, and energy consumption. They also affect the data delivery ratio. Hence, this paper presents an energy efficient watchman based flooding algorithm to address void holes. First, the proposed technique is formally verified by the Z-Eves toolbox to ensure its validity and correctness. Second, simulation is used to evaluate the energy consumption, packet loss, packet delivery ratio, and throughput of the network. The results are compared with well-known algorithms like energy-aware scalable reliable and void-hole mitigation routing and angle based flooding. The extensive results show that the proposed algorithm performs better than the benchmark techniques.