• 제목/요약/키워드: Energy-Harvesting System

검색결과 300건 처리시간 0.029초

웨이브 글라이더 메커니즘을 이용한 이동형 파력발전 시스템의 성능 테스트와 최적 설계에 관한 연구 (Study on Mobile Wave Energy Harvesting System Utilizing Wave Glider Mechanism)

  • 조한길;유선철
    • 한국해양공학회지
    • /
    • 제32권5호
    • /
    • pp.393-401
    • /
    • 2018
  • This paper reports a novel mobile-type wave energy harvesting system. The proposed system adopts a wave glider's propulsion mechanism. A wave glider's blades were mounted on a circular layout and generated a rotational motion. Combining the wave converting system with the wave glider, a mobile floating-type robotic buoy system was developed. It enabled the relocation of the buoy position, as well as station-keeping for long term operation. It had a small size and could efficiently harvest wave energy. A feasibility study and modeling were carried out, and a prototype system was constructed. Various tank tests were performed to optimize the proposed wave energy harvesting system.

신재생에너지의 에너지 하베스팅을 위한 DPP시스템의 구성과 효율계산 (Configuration and Efficiency Computation of the DPP System for Energy Harvesting of Renewable Energy)

  • 박승화;이현재;손진근
    • 전기학회논문지P
    • /
    • 제67권3호
    • /
    • pp.137-142
    • /
    • 2018
  • Energy harvesting technology is drawing attention as a means of collecting various eco-friendly energy and accumulating residual energy. Recently, differential power processing (DPP) is being developed as part of energy harvesting. This is being studied as a solution to the loss of power generation between power modules and the problems caused by module small losses depending on the size of power production. In this paper, we propose the necessity of the DPP by comparing and analyzing energy harvesting related module integration system and power supply efficiency of DPP. The power efficiency of the converter and the power difference between the wind power and the photovoltaic power supply have been changed to demonstrate the effectiveness of the proposed system.

지하시설물용 센서 네트워크를 위한 에너지 획득 장치 (Energy Harvesting System for Underground Facility Sensor)

  • 권영민;이형수
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2009년도 정보통신설비 학술대회
    • /
    • pp.136-137
    • /
    • 2009
  • In this paper, we introduce UFSN(Underground Facility Sensor Network) in order to build the intelligent management system for the underground facility and drainage in convergence with ubiquitous technologies and propose the energy harvesting system for UFSN.

  • PDF

압전체를 이용한 에너지 수집 장치 실험 (Experiments on Piezoelectric Energy Harvesting Device)

  • 정문산;곽문규;김기영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.360-368
    • /
    • 2007
  • This paper is concerned with the development of piezoelectric energy harvesting device. Literature survey was carried out to investigate the state-of-art technology regarding piezoelectric energy harvesting method. It shows that the piezoelectric energy harvesting system has been researched as the needs for the auxiliary power system grow for ubiquitous sensor node. In this study, the piezoelectric energy harvesting system was constructed and the corresponding electric circuit was also built to investigate the power characteristics. Experimental results show that it can charge the small battery with ambient vibrations but still needs an effective mechanism to collect ambient energies.

  • PDF

Performance Analysis of Nonlinear Energy-Harvesting DF Relay System in Interference-Limited Nakagami-m Fading Environment

  • Cvetkovic, Aleksandra;Blagojevic, Vesna;Ivanis, Predrag
    • ETRI Journal
    • /
    • 제39권6호
    • /
    • pp.803-812
    • /
    • 2017
  • A decode-and-forward system with an energy-harvesting relay is analyzed for the case when an arbitrary number of independent interference signals affect the communication at both the relay and the destination nodes. The scenario in which the relay harvests energy from both the source and interference signals using a time switching scheme is analyzed. The analysis is performed for the interference-limited Nakagami-m fading environment, assuming a realistic nonlinearity for the electronic devices. The closed-form outage probability expression for the system with a nonlinear energy harvester is derived. An asymptotic expression valid for the case of a simpler linear harvesting model is also provided. The derived analytical results are corroborated by an independent simulation model. The impacts of the saturation threshold power, the energy-harvesting ratio, and the number and power of the interference signals on the system performance are analyzed.

에너지 하베스팅 기술의 국내 건축물 적용 방안에 관한 기초 연구 - Interseasonal Heat Transfer System 적용 사례 중심으로 - (A Study on the Application Method in Korea of Energy Harvesting Technology - Focused on the Case Study of Interseasonal Heat Transfer System -)

  • 조병완;이윤성;윤광원;김도근
    • 한국도로학회논문집
    • /
    • 제16권4호
    • /
    • pp.51-62
    • /
    • 2014
  • PURPOSES: This research is a basic study for application method in korea of energy harvesting technology, and it is a research to find out the direction of architectural planning through analyzing cases of interseasonal heat transfer system applied buildings. METHODS : In this paper authors investigate application necessity of energy harvesting technology, we analyzed energy use status of building section through analyzing domestic energy consumption status and analyzed domestic renewable energy generation potential. Also we study the features of energy harvesting technology, interseasonal heat transfer system, and case study on interseasonal heat transfer system applied buildings. RESULTS : On the basis of case study on interseasonal heat transfer system applied buildings, we analyzed feasibility study and classified into four sections(economic, environment, design, applicability), and suggested directions of architectural planning. CONCLUSIONS: Economic renewable energy for public and commercial buildings(hospitals, offices, schools, factories) can be provided effectively using Interseasonal Heat Transfer.

마찰전기 나노발전기를 위한 임피던스 커플러 스위치를 탑재한 3단계 전력 관리 시스템 (Three-Stage Power Management System Employing Impedance Coupler Switch for Triboelectric Nanogenerator)

  • 윤보경;이준영;정지훈
    • 전력전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.243-250
    • /
    • 2020
  • Energy harvesting is a recent technology involving the harvest and utilization of extremely small surrounding energy. Energy harvesting research is conducted in various fields. Triboelectric nanogenerators (TENGs) are energy harvesting technologies that use static electricity generated by physical movement or friction. Although TENGs generate output power in microwatt levels, they experience high internal impedance compared with other energy harvesting generators, thereby making the continuous transfer of electric power to loads difficult. This study proposes a power management system for TENGs that consists of three stages, that is, an AC/DC rectifier, an impedance coupler switch with a capacitor bank, and a DC/DC converter. In addition, the selection method of the AC/DC rectifier and DC/DC converter is proposed to maximize the amount of power transferred from energy harvesting areas. Furthermore, the impedance coupler switch and capacitor bank are discussed in detail. The validity and performance of the proposed three-stage power management system for TENGs are verified using a prototype system.

A Simple Energy Harvesting Algorithm for Wireless Sensor Networks

  • Encarnacion, Nico N.;Yang, Hyunho
    • Journal of information and communication convergence engineering
    • /
    • 제10권4호
    • /
    • pp.359-364
    • /
    • 2012
  • Harvesting energy from the environment is essential for many applications to slow down the deterioration of energy of the devices in sensor networks and in general, the network itself. Energy from the environment is an inexhaustible supply which, if properly managed and harvested from the sources, can allow the system to last for a longer period - more than the expected lifetime at the time of deployment, or even last indefinitely. The goal of this study is to develop a simple algorithm for ns-2 to simulate energy harvesting in wireless sensor network simulations. The algorithm is implemented in the energy module of the simulator. Energy harvesting algorithms have not yet been developed for ns-2. This study will greatly contribute to the existing knowledge of simulating wireless sensor networks with energy harvesting capabilities in ns-2. This paper will also serve as a basis for future research papers that make use of energy harvesting.

Transient Analysis of Self-Powered Energy-Harvesting using Bond-Graph

  • Makihara, Kanjuro;Shigeta, Daisuke;Fujita, Yoshiyuki;Yamamoto, Yuta
    • International Journal of Aerospace System Engineering
    • /
    • 제2권1호
    • /
    • pp.47-52
    • /
    • 2015
  • The transient phenomenon of self-powered energy-harvesting is assessed using a bond-graph method. The bond-graph is an energy-based approach to describing physical-dynamic systems. It shows power flow graphically, which helps us understand the behavior of complicated systems in simple terms. Because energy-harvesting involves conversion of power in mechanical form to the electrical one, the bond-graph is a good tool to analyze this power flow. Although the bond-graph method can be used to calculate the dynamics of combining mechanical and electrical systems simultaneously, it has not been used for harvesting analysis. We demonstrate the usability and versatility of bond-graph for not only steady analysis but also transient analysis of harvesting.

PZT 시스템과 전기 시스템의 최적 설계를 통한 Energy Harvesting 효율 향상 (Energy Harvesting Efficiency Enhancement by Optimal Design of PZT and Electric System)

  • 오재응;김진수;정운창;윤정민;노정준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.925-926
    • /
    • 2014
  • The purpose of this study is intended to improve the efficiency of energy harvesting through the optimal design of the PZT system and the electrical system. To improve the efficiency of energy harvesting, it is necessary to increase the output voltage generated from the PZT. In this study, first the mounting position and shape of the PZT which is attached to the cantilever were optimized. Second electric circuit was optimized by using a series connection of a circuit and the electrical resonance frequency. As a result, we improve the output voltage about 5V.

  • PDF