• Title/Summary/Keyword: Energy transport

Search Result 1,956, Processing Time 0.028 seconds

Ordinary Magnetoresistance of an Individual Single-crystalline Bi Nanowire (자발 성장법으로 성장된 단결정 Bi 단일 나노선의 정상 자기 저항 특성)

  • Shim, Woo-Young;Kim, Do-Hun;Lee, Kyoung-Il;Jeon, Kye-Jin;Lee, Woo-Young;Chang, Joon-Yeon;Han, Suk-Hee;Jeung, Won-Young;Johnson, Mark
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.166-171
    • /
    • 2007
  • We report the magneto-transport properties of an individual single crystalline Bi nanowire grown by a spontaneous growth method. We have successfully fabricated a four-terminal device based on an individual 400-nm-diameter nanowire using plasma etching technique to remove an oxide layer forming on the outer surface of the nanowire. The transverse MR (2496% at 110 K) and longitudinal MR ratios (38% at 2 K) for the Bi nanowire were found to be the largest known values in Bi nanowires. This result demonstrates that the Bi nanowires grown by the spontaneous growth method are the highest-quality single crystalline in the literatures ever reported. We find that temperature dependence of Fermi energy ($E_F$) and band overlap (${\triangle}_0$) leads to the imbalance between electron concentration ($n_e$) and hole concentration ($n_h$) in the Bi nanowire, which is good agreement with the calculated $n_e\;and\;n_h$ from the respective density of states, N(E), for electrons and holes. We also find that the imbalance of $n_e\;and\;n_h$ plays a crucial role in determining magnetoresistance (MR) at T<75 K for $R_T$ and at T<205 K for $R_L$, while mean-free path is responsible for MR at T>75 K for $R_T$ and T>205 K for $R_L$.

The Analysis of Assessment Factors for Offshore Wind Port Site Evaluation (해상풍력 전용항만 입지선정 평가항목에 관한 연구)

  • Ko, HyunJeung
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.3
    • /
    • pp.27-44
    • /
    • 2012
  • The offshore wind farm is increasingly attractive as one of future energy sources all over the world. In addition, the capacity of an offshore wind turbine gets larger and its physical characteristics are big and heavy. In this regard, a special port is necessary to assemble, store, and transport the offshore wind systems, supporting to form the offshore wind farms. Thus, this study aims to provide a policy maker which evaluation factors can significantly affect to the optimal site selection of a offshore wind port. For this, Fuzzy-AHP method is applied to capture the relative weights. The results of this study can be summarized as follows. Five criteria in level I was defined such as the accumulation factor, the regional factor, the economic factor, the location factor, and the consortium factor. Of these, the accumulation factor(37.4%), the location factor(34.2%), and the economic factor( 24.5%) were analyzed by major factors. In level II, three assessment items of each factor were selected so that total fifteen items were formed. To sum up, the site selection of offshore wind port should consider the density of the wind industry, cargo volume of securing the economic operation of terminals, the development degree of offshore wind related industry, and the proximity to the offshore wind farms. In other words, the construction of offshore wind port should be paid attention to considering not only the proximity to offshore wind farms but also the preference of turbine manufacturing companies.

Facile Synthesis of In2S3 Modified Ag3PO4 Nanocomposites with Improved Photoelectrochemical Properties and Stabilities

  • Zeng, Yi-Kai;Bo, Shenyu;Wang, Jun-hui;Cui, Bin;Gu, Hao;Zhu, Lei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.601-608
    • /
    • 2020
  • In this work, Ag3PO4/In2S3 nanocomposites with low loading of In2S3 (5-15 wt %) are fabricated by two step chemical precipitation approach. The microstructure, composition and improved photoelectrochemical properties of the as-prepared composites are studied by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photocurrent density, EIS and amperometric i-t curve analysis. It is found that most of In2S3 nanoparticles are deposited on the surfaces of Ag3PO4. The as-prepared Ag3PO4/In2S3 composite (10 wt%) is selected and investigated by SEM and TEM, which exhibits special morphology consisting of lager size substrate (Ag3PO4), particles and some nanosheets (In2S3). The introduction of In2S3 is effective at improving the charge separation and transfer efficiency of Ag3PO4/In2S3, resulting in an enhancement of photoelectric behavior. The origin of the enhanced photoelectrochemical activity of the In2S3-modified Ag3PO4 may be due to the improved charge separation, photocurrent stability and oriented electrons transport pathways in environment and energy applications.

A Study on Feasible 3D Object Model Generation Plan Based on Utilization, Demand, and Generation Cost (입체모형 활용 현황, 수요 및 구축 비용을 고려한 실현 가능한 3차원 입체모형 구축 방안 연구)

  • Kim, Min-Soo;Park, Doo-Youl
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.215-229
    • /
    • 2020
  • In response to the recent 4th industrial revolution, the demand for 3D object models in the latest fields of digital twin, autonomous driving, and VR/AR, as well as the existing fields such as city, construction, transportation, and energy has increased significantly. It is expected that the demand for 3D object models with various precision from LOD1 to LOD4 will increase more and more in various industry fields. However, the Ministry of Land, Infrastructure and Transport, and the local government and the private sector have partially built 3D object models of different precisions for some specific regions because of the huge cost. Therefore, this study proposes a feasible plan that can solve the cost problem in generating 3D object models for the whole territory. For our purpose, we first analyzed usage, demand, generation technology and generation cost for 3D object models. Afterwards, we proposed LOD3 model generation plan for all territory using automatic 3D object model generation technology based on image matching. Additionally, we supplemented the proposed plan by using LOD4 generation plan for landmarks and LOD2 generation plan non-urban area. In the near future, we expect this would be a great help in establishing a feasible and effective 3D object model generation plan for the whole country.

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

A Study on Protection Depending on Mesh Size of Expanded Metal for Slope Reinforcement (사면보강용 Expanded Metal 격자크기에 따른 인발 특성 연구)

  • Ji, Younghwan;Kim, Kihwan;Kim, Sungho;Hwang, Yeongcheol;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.47-56
    • /
    • 2010
  • The construction of new roads and the consistent extension of already-existing roads or the line-shape revision of those roads are increased with the governmental investment to SOC facilities currently. Accordingly, the road cut slopes are in the trend of rapidly increasing. As the road slope has increased, a lot of human and property damages has entailed consequently and in the local case, numerous studies have carried out aiming at minimizing this damages caused by the rockfall and landslide. In general, standard falling rock prevention facility has employed for most of the local road slope based on "Guide for Installation and Management of Road Safety Facilities" published by MLTM(the Ministry of Land, Transport, and Maritime Affairs) but profound doubt has raised as to whether this rockfall prevention facility would function properly enough to prevent rockfall efficiently without any damages in case of actual occurrence of rockfall. In addition, it is a reality that in most cases, such work is relied on overseas technology as a whole as the local technical level is low and in case of rockfall prevention net, it is judged that a study on rockfall prevention net that is able to endure more powerful rockfall energy is required as the problem including net bursting is taken place as a result of enough bearing force being failed to be demonstrated due to its partial weak point(not uniformly made). Under this background, in this study, three kinds of model depending on mesh size of expanded metal that is considered to have an adoptability as rockfall prevention net, as target are selected and characteristics depending on mesh size of expanded metal is intended to be researched through a pull-out test performance by using pull-out test equipment rockfall prevention net.

Controlling the Properties of Graphene using CVD Method: Pristine and N-doped Graphene (화학기상증착법을 이용한 그래핀의 물성 조절: 그래핀과 질소-도핑된 그래핀)

  • Park, Sang Jun;Lee, Imbok;Bae, Dong Jae;Nam, Jungtae;Park, Byung Jun;Han, Young Hee;Kim, Keun Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.169-174
    • /
    • 2015
  • In this research, pristine graphene was synthesized using methane ($CH_4$) gas, and N-doped graphene was synthesized using pyridine ($C_5H_5N$) liquid source by chemical vapor deposition (CVD) method. Basic optical properties of both pristine and N-doped graphene were investigated by Raman spectroscopy and XPS (X-ray photoemission spectroscopy), and electrical transport characteristics were estimated by current-voltage response of graphene channel as a function of gate voltages. Results for CVD grown pristine graphene from methane gas show that G-peak, 2D-peak and C1s-peak in Raman spectra and XPS. Charge neutral point (CNP; Dirac-point) appeared at about +4 V gate bias in electrical characterization. In the case of pyridine based CVD grown N-doped graphene, D-peak, G-peak, weak 2D-peak were observed in Raman spectra and C1s-peak and slight N1s-peak in XPS. CNP appeared at -96 V gate bias in electrical characterization. These result show successful control of the property of graphene artificially synthesized by CVD method.

Evaluation of Street Tree Rootage by Transplanting Methods - Photochemical Response Analysis of Different Cultivation for Sorbus alnifolia - (가로수의 이식방법에 따른 수목 활착 평가 - 재배방법별 팥배나무의 광화학적 반응 해석 -)

  • Yoo, Sung Young;Park, So Hyun;Park, Chung In;Kim, Tae Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.1
    • /
    • pp.132-138
    • /
    • 2015
  • Trees, cultivated in containers, are appropriate in soil deformation such as road sites with cutting and filling. This study tested the effectiveness of trees produced in containers for early rootage in street tree transplantation. For the study, Korean Mountain Ashes(Sorbus alnifolia) were used for experimental groups. The groups were categorized into three categories: trees cultivated in containers with mulching treatment(group A), trees cultivated outdoors with mulching treatment (group B), and trees cultivated in containers with weeding treatment(group C). Each group consisted of ten trees of the same size and transplanted to the experimental site. In order to compare each group's rootage, the study was carried out with the chlorophyll fluorescence method by the analysis of photochemical reaction. As a result of the study, group B had the lowest the maximum fluorescence amount(P). The amount of fluorescence increased by OJ transition of the process, and appeared to reduce the photosystem II electron transport efficiency. In photosystem II, electron transfer energy flux through photosystem I(RE1o/RC, RE1o/CS) was also reduced by more than 20% in group B. These results may imply that transplantation of container-cultivated trees with mulching treatment provides the most rapid rootage among the groups. The weeding treatment is also more effective than mulching treatment for rapid rootage of street trees.

Optical Monte Carlo Simulation on Spatial Resolution of Phosphor Coupled X-ray Imaging Detector (형광체 결합형 X선 영상검출기의 공간 해상력 몬테카를로 시뮬레이션)

  • Kang, Sang-Sik;Kim, So-Yeong;Shin, Jung-Wook;Heo, Sung-Wook;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.328-328
    • /
    • 2007
  • Large area matrix-addressed image detectors are a recent technology for x-ray imaging with medical diagnostic and other applications. The imaging properties of x-ray pixel detectors depend on the quantum efficiency of x-rays, the generated signal of each x-ray photon and the distribution of the generated signal between pixels. In a phosphor coated detector the light signal is generated by electrons captured in the phosphor screen. In our study we simulated the lateral spread distributions for phosphor coupled detector by Monte Carlo simulations. Most simulations of such detectors simplify the setup by only taking the conversion layer into account neglecting behind. The Monte Carlo code MCNPX has been used to simulate the complete interaction and subsequent charge transport of x-ray radiation. This has allowed the analysis of charge sharing between pixel elements as an important limited factor of digital x-ray imaging system. The parameters are determined by lateral distribution of x-ray photons and x-ray induced electrons. The primary purpose of this study was to develop a design tool for the evaluation of geometry factor in the phosphor coupled optical imaging detector. In order to evaluate the spatial resolution for different phosphor material, phosphor geometry we have developed a simulation code. The developed code calculates the energy absorption and spatial distribution based on both the signal from the scintillating layer and the signal from direct detection of x-ray in the detector. We show that internal scattering contributes to the so-called spatial resolution drop of the image detector. Results from the simulation of spatial distribution in a phosphor pixel detector are presented. The spatial resolution can be increased by optimizing pixel size and phosphor thickness.

  • PDF

Unsteady Free Convection Flow in Horizontal Channels with Arbitrary Wall Temperatures (임의의 벽면온도에 따른 수평채널에서의 비정상 자연대류운동)

  • Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 1997
  • Energy transfer by free convection arises in many engineering applications, such as a hot steam radiator for heating a room, refrigeration coils, electric transformers, heating elements and electronic equipments. Generally unsteady natural convection flow in a horizontal channel with arbitrary wall temperatures and the mathematical and physical basis of convection transport has been considered in general. A physically meaningful exact solution of the problem has been obtained in a closed form by the application of the standard finite sine transform technique. Influences of the governing parameters, the Prandtl number and the Rayleigh number, to bring the flow and heat transfer to final steady states have been discussed separately. For constant values of the arbitray wall temperatures and of the function, determining the average axial velocity, the final steady state is approached in different times respectively for the cases when the Prandtl number Pr>1 and Pr<1. It is also seen that the function, representing the axial temperature gradient, is influenced by none of the governing parameters : but the steady state flow is influenced only by the Rayleigh number. There are, of course, many applications. Free convection strongly influences heat transfer from pipes and transmission lines, as well as from various electronic devices. It is also relevant to the environmental sciences, where it is responsible for oceanic and atmospheric motions, as well as related heat transfer processes.

  • PDF