• Title/Summary/Keyword: Energy transformation

Search Result 658, Processing Time 0.028 seconds

Development of Transformation-Core for Magnetic Field in Switchgear

  • Gwan-hyung Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.316-321
    • /
    • 2023
  • In this study, we developed a conversion core that produces power by utilizing the unused magnetic field in a switchboard. The conversion core makes it possible to utilize power that is normally wasted. The conversion core is composed of a core, filter, and battery. A prototype was installed in a switchboard to conduct tests on the output, battery storage, and output boosting of multiple batteries. Energy was harvested from the magnetic field generated by a busbar of the switchboard, and the power conversion ratio of the core yielded 1.08-1.01 mW per 1 A of bus current. Supplying this technology to the market after further R&D and commercialization is expected to greatly assist in the dissemination of energy harvesting, which has not yet spread widely to the general public.

Continuous Cooling Transformation, Microstructure and Mechanical Properties of High-Strength Low-Alloy Steels Containing B and Cu (B과 Cu가 포함된 고강도 저합금강의 연속냉각 변태와 미세조직 및 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.525-530
    • /
    • 2013
  • This study investigated the continuous cooling transformation, microstructure, and mechanical properties of highstrength low-alloy steels containing B and Cu. Continuous cooling transformation diagrams under non-deformed and deformed conditions were constructed by means of dilatometry, metallographic methods, and hardness data. Based on the continuous cooling transformation behaviors, six kinds of steel specimens with different B and Cu contents were fabricated by a thermomechanical control process comprising controlled rolling and accelerated cooling. Then, tensile and Charpy impact tests were conducted to examine the correlation of the microstructure with mechanical properties. Deformation in the austenite region promoted the formation of quasi-polygonal ferrite and granular bainite with a significant increase in transformation start temperatures. The mechanical test results indicate that the B-added steel specimens had higher strength and lower upper-shelf energy than the B-free steel specimens without deterioration in low-temperature toughness because their microstructures were mostly composed of lower bainite and lath martensite with a small amount of degenerate upper bainite. On the other hand, the increase of Cu content from 0.5 wt.% to 1.5 wt.% noticeably increased yield and tensile strengths by 100 MPa without loss of ductility, which may be attributed to the enhanced solid solution hardening and precipitation hardening resulting from veryfine Cu precipitates formed during accelerated cooling.

Microstructural Characteristics of the Fuel Cladding Tubes Irradiated in Kori Unit 1

Development of SRIAM Computation Module for Enhanced Calculation of Nonlinear Energy Transfer in 3rd Generation Wave Models (제3세대 파랑모델의 비선형 에너지 이송항 계산 효율 증대를 위한 SRIAM 계산모듈 개발)

  • Lee, Jooyong;Yoon, Jaeseon;Ha, Taemin
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.405-412
    • /
    • 2017
  • Because of the rapid development of computer technology in recent years, wave models can utilize parallel calculations for the high-resolution prediction of open sea and coastal areas with high accuracy. Parallel calculations also allow national agencies in the relevant sectors to produce marine forecasting data through massive parallel calculations. Meanwhile, the eastern coast of the Korean Peninsula has been increasingly damaged by swell-like high waves, and many researchers and scientists are continuing their efforts to anticipate and reduce the damage. In general, the short-term transformation of swell-like high waves can be reproduced relatively well in the third generation wave models, but the transformation of relatively long period waves needs to be simulated with higher accuracy in terms of the nonlinear wave interactions to gain a better understanding of the low-frequency wave generation and development mechanisms. In this study, we developed a calculation module to improve the calculation of the nonlinear energy transfer in the 3rd generation wave model and integrated it into the wave model to effectively consider the nonlinear wave interaction. First, the nonlinear energy transfer calculation module and third generation model were combined. Then, the combined model was used to reproduce the wave transformation due to the nonlinear interaction, and the performance of the developed operation module was verified.

Drift Diffusion of Radiation-produced Point Defects to Edge Dislocation

  • Park, S.S.;Chang, K.O.;Choi, S.P.;Kim, C.O.
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.151-156
    • /
    • 1999
  • Under the heavy irradiation of crystalline materials when the production and the recombination of interstitials and vacancies are included, the diffusion equations become nonlinear. An effort has been made to arrange an appropriate transformation of these nonlinear differential equations to more solvable Poisson's equations, finally analytical solutions for simultaneously calculating the concentrations of interstitials and vacancies in the angular dependent Cottrell's potential of the edge dislocation have been derived from the well-known Green's theorem and perturbation theory.

  • PDF

Effect of Grain Size on the Tensile Properties of an Austenitic High-Manganese Steel (오스테나이트계 고망간강의 인장 특성에 미치는 결정립 크기의 영향)

  • Lee, Sang-In;Cho, Yun;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.325-331
    • /
    • 2016
  • This paper presents a study of the tensile properties of austenitic high-manganese steel specimens with different grain sizes. Although the stacking fault energy, calculated using a modified thermodynamic model, slightly decreased with increasing grain size, it was found to vary in a range of $23.4mJ/m^2$ to $27.1mJ/m^2$. Room-temperature tensile test results indicated that the yield and tensile strengths increased; the ductility also improved as the grain size decreased. The increase in the yield and tensile strengths was primarily attributed to the occurrence of mechanical twinning, as well as to the grain refinement effect. On the other hand, the improvement of the ductility is because the formation of deformation-induced martensite is suppressed in the high-manganese steel specimen with small grain size during tensile testing. The deformation-induced martensite transformation resulting from the increased grain size can be explained by the decrease in stacking fault energy or in shear stress required to generate deformation-induced martensite transformation.

Integrated Solid Waste Management for the Environmentally Sound and Sustainable Development (환경적으로 지속가능한 개발을 위한 폐기물의 통합적 관리 방안)

  • Hong, Sang-Pyo;Nam, Kie-Chang
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.87-98
    • /
    • 2000
  • The costs of solid waste management have continued to increase. Stricter environmental regulations have been applied to waste management units. Future integrated solid waste management should be balanced between source reduction, recycling, energy recovery, and land disposal. To achieve more balanced solid waste management programs, more local governments must adopt diversion and recycling goals and finance to meet those goals. The hierarchy of integrated solid waste management must be enforced in a manner that is flexible enough to allow local governments to implement waste management facilities that match the communities' ability to pay for them. In establishing a hierarchy of integrated solid waste management, local governements have difficulties in implementing source reduction and recycling because of a lack of local control and inability to pay for new facilities. Integrated solid waste management involves selecting compatible options for facilities to manage the collection, recovery of energy and materials(transformation), and disposal of solid wastes efficiently. Waste Collection, transformation, and disposal must support source reduction and recycling activities.

  • PDF

A Proposal for Partial Automation Preparation System of BIM-based Energy Conservation Plan - Case Study on Automation Process Using BIM Software and Excel VBA - (BIM기반 에너지절약계획서 건축부문 부분자동화 작성 시스템 제안 - BIM 소프트웨어와 EXCEL VBA를 이용한 자동화과정을 중심으로 -)

  • Ryu, Jea-Ho;Hwang, Jong-Min;Kim, Sol-Yee;Seo, Hwa-Yeong;Lee, Ji-Hyun
    • Journal of KIBIM
    • /
    • v.12 no.2
    • /
    • pp.49-59
    • /
    • 2022
  • The main idea of this study is to propose a BIM-based automation system drawing up a report of energy conservation plan in the architecture division. In order to obtain a building permit, an energy conservation plan must be prepared for buildings with a total floor area of 500m2 or more under the current law. Currently, it is adopted as a general method to complete a report by obtaining data and drawings necessary for an energy conservation plan through manual work and input them directly into the verification system. This method takes a lot of effort and time in the design phase which ultimately increases the initial cost of the business, including the services of companies specialized in the environmental field. However, in preparation for mandatory BIM work process in the future, it is necessary to introduce BIM-based automatic creation system that has an advantage for shortening the whole process to enable rapid permission of energy-saving designs for buildings. There may be many methods of automation, but this study introduces how to build an application using Dynamo of Revit, in terms of utilizing BIM, and write an energy conservation plan by automatic completion of report through Dynamo and Excel's VBA algorithm, which can save time and cost in preparing the report of energy conservation plan compared with the manual process. Also we have insisted that the digital transformation of architectural process is a necessary for an efficient use of our automation system in the current energy conservation plan workflow.

Recent Development in Computational Welding Mechanics (전산용접역학의 최근 동향)

  • Im, Se-Young;Han, You-Sung;Lee, Kye-Hyoung;Han, Myoung-Soo;Choi, Kang-Hyouk
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.87-91
    • /
    • 2009
  • Welding is one of the most important joining processes and the effect of welding residual stresses in the structure has a great deal of influence on its quality. In this paper, recent development in computational welding mechanics, particularly calculation of welding residual stresses, is introduced. The hypoelastic formulation of finite element analysis for thermoelastic-plastic deformation is applied to welding processes to find residual deformations and stresses. Leblond's phase evolution equation coupled with the energy equation is employed to calculate the phase volume fraction; this plays an important role as a kinetics parameter affecting phase fraction effects in the mechanical constitutive equation of welded materials. Furthermore, transformation plasticity is taken into account for an accurate evaluation of stress. The influence of the phase transformation and the transformation plasticity on residual stress is investigated by means of numerical analyses using metallurgical parameters in Leblond's phase evolution equation that are adjusted with respect to various cooling rates in a CCT-diagram. Coding implementation is conducted by way of the ABAQUS user subroutines, UMAT.

  • PDF