• Title/Summary/Keyword: Energy textile

Search Result 325, Processing Time 0.027 seconds

Synthesis and Properties of Novel Rhodamine 6G Fluorescent Dye Compound

  • Kim, Hyung-Joo;Wang, Sheng;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.24 no.3
    • /
    • pp.153-157
    • /
    • 2012
  • One of organic dye materials which have been long lasting investigated is rhodamine 6G dye series. This dye has been attracted with considerable interests due to the reason of its promising photochemical properties. In this study, a novel fluorescent dye compound based on rhodamine 6G derivative was synthesized through the reaction of rhodamine 6G hydrazide and indole-3-carboxaldehdyde. Absorption and fluorescent emission spectra of this dye were determined with the properties of solvatofluorochromism. Related electron energy states of the dye compound were also characterized by computational calculations.

Effect of Acetophenone on the Rate of Wool Dyeing (아세토페논이 양모의 염색속도에 미치는 영향)

  • Dho, Seong-Kook
    • Fashion & Textile Research Journal
    • /
    • v.10 no.3
    • /
    • pp.394-398
    • /
    • 2008
  • One of barely water soluble ketones, acetophenone (AP) was dissolved in methanol and then was mixed with aqueous solution of C. I. Red Acid 114. In order to find out the role of AP in the dyeing process the rate constants and the activation parameters were calculated. The rate for the dyeing with AP was faster than that without it. Because of the reduced temperature dependence by AP the activation energy ($E_a$) for the dyeing with AP was smaller than that without it. With increasing temperature the activation enthalpy (${\Delta}H^*$), the activation entropy (${\Delta}S^*$), and the activation free energy ($G^*$) decreased, which was more noticeable in dyeing with AP. The rate constants and the activation parameters agreed well with the results from the previous reports that the ability of AP to increase disaggregation of dye molecules, loosening the wool fiber, and wickabilty of dyeing solution made it possible to dye wool fiber at low temperature.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

Study on Decomposition Reactions of Poly(ethylene terephthalate) Films Treated with Mono-sodium Ethylene Glycolate (Mono-sodium ethylene glycolate에 의한 Poly(ethylene terephthalate) Film의 분해반응에 관한 연구)

  • Cho, Hwan;Huh, Man-Woo;Cho, In-Sul;Cho, Kyu-Min;Yoon, Hung-Soo
    • Textile Coloration and Finishing
    • /
    • v.2 no.3
    • /
    • pp.26-35
    • /
    • 1990
  • This study was carried out with the view of fundamental investigating to improve the tactile and the hygroscopicity of Poly(ethylene Terephthalate) (PET)fibers. Mono-sodium ethylene glycolate in ethylene glycol (MSEG-EG) solution was prepared and PET films were treated with it. The following conclusions were obtained. When PET films were decomposed in MSEG-EG solution, decomposition rate constant showed an exponential relationship with treating temperature; activition energy was 23.30 Kcal/mol, activation enthalpy was 22.52~22.60 Kcal/mol and activation entropy was -29.20~ -29.41 e.u. On the basis of the results obtained above and structure identification of decomposition products, it was found that the decomposition reaction proceeded through ester interchange reaction.

  • PDF

An Exploration on the Piezoelectric Energy Harvesting Clothes based on the Motion Analysis of the Extremities (인체의 사지 동작 분석에 기반한 압전 에너지 수확 의류의 탐색적 연구)

  • Park, Seon-Hyung;Cho, Hyun-Seung;Yang, Jin-Hee;Yun, Dae-Yeon;Yun, Kwang-Seok;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 2013
  • Recently, researches of piezoelectric energy harvesting were tried and in this study, a piezoelectric energy harvesting clothes was developed. First, piezoelectric energy harvesting zone on the extremities were drawn by 3D motion capturing and as a result, the hip, the elbow, and the knee were determined. A new structure of piezoelectric harvester was developed for appling to clothes. Because it needed to be flexible and sensitive for human body, the 2 layer stacked structure was proposed. A prototype of seamless garment was designed for a harvesting clothes because it needed to be body-tight and not to restrict the movement. High peak-to-peak voltages were acquired from the energy harvesting clothes.

  • PDF

Photo-grafting Dyeing of Wool Fabrics with Dimethacrylated Quinizarin Dye (반응성 염료의 광그라프트에 의한 양모직물의 염색)

  • Dong, Yuanyuan;Jang, Jin-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.26-26
    • /
    • 2012
  • The hydrophobic nature of the wool surface give rise to difficult penetration of dye molecules. Among all the methods of modification, graft polymerization is an attractive method to impart a variety of functional groups to a polymer. Grafting has been made by irradiating the light on the polymer in the presence of a solvent containing monomer. The energy source commonly used are high-energy electrons, X-rays, UV and visible light. UV irradiation is a relatively low-energy radiation in comparison with others since it has the least possibility to change bulk properties. In the present paper, a photo-reactive dye was synthesized from quinizarin by the reaction with methacryloyl chloride. The synthesized dye was continuously grafted onto wool fabric at room temperature by UV irradiation. Several key parameters including UV energy, dye concentration and pH have been examined to understand their influence on the photoreactive coloration.

  • PDF

The experimental study of the performance characteristics of a tumbler type laundry dryer (통기드럼형 의류용 건조기의 성능특성에 관한 실험적 연구)

  • Jang, Yong-Soo;Lee, Sang-Won;Kim, Soo-Yeon;Jung, Pyung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.187-192
    • /
    • 2000
  • The textile which is rotated in the tumbler dryer is dried by the heated air. the energy consumption for drying textile depends on various parameters. The objective of this study is to save the energy and the drying time. One of the various methods for energy saving is EGR(exhaust gas recirculation). We set the drying equipment for this study and perform the experimental study with the changes of the recirculation rate, the input power, and the air mass flow rate. We found the optimal drying conditions.

  • PDF

A Study on Mechanical Characteristics Analysamsarais of PA/GF Composite Materials for Cowl Cross Beam (카울크로스빔용 PA/GF복합재료의 기계적 특성 분석에 관한 연구)

  • Hwan-kuk Kim;Jong-vin Park;Ji-hoon Lee;Heon-kyu Jeong
    • Textile Coloration and Finishing
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • This study is about a hybrid lightweight cowl crossbeam structure with high rigidity and ability to absorb collision energy to support the cockpit module, which is an automobile interior part, and to absorb energy during a collision. It is a manufacturing process in which composite material bracket parts are inserted and injected into existing steel bars. When considering the mounting condition of a vehicle, the optimization of the fastening condition of the two parts and the mechanical properties of the composite material is acting as an important factor. Therefore, this study is about a composite material having a volume content of Polyamide(PA) and Glass Fiber used as a composite material for a composite material-metal hybrid cowl crossbeam. As a result of analyzing the physical properties of the PA/GF composite material, experimental data were obtained that can further enhance tensile strength and flexural strength by using PA66 rather than PA6 used as a base material for the composite material. And based on this, it contributed to securing the advantage of lightening by using high-stiffness composite material by improving the high disadvantage of the weight of the cowl crossbeam material, which was made only of existing metal materials.

Electrochemical Degradation of Textile Effluent Using PbO2 Electrode in Tube Electrolyzer

  • Chao Wang; Yongqiang Li;Junmin Wan;Yi Hu;Yi Huang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.190-197
    • /
    • 2024
  • A commercial PbO2 mesh cylinder electrode was utilized as the anode for the electrochemical degradation of the textile effluent after the biological treatment with the titanium cylinder as the cathode in a self-made tube electrolyzer. The electrochemical performances of the PbO2 electrode in tube electrolyzer under different initial pH, electrolyte flow rates, current densities and times of the electrochemical degradation were investigated. The experimental results illustrated that the PbO2 electrode can reduce the chemical oxygen demand (COD) of the textile effluent from 94.0 mg L-1 to 65.0 mg L-1 with the current efficiency of 88.3%, the energy consumption of 27.7 kWh kg-1 (per kilogram of degraded COD) and the carbon emissions of 18.0 kg CO2 kg-1 (per kilogram of degraded COD) under the optimal operating conditions. In addition, the COD of the textile effluent could be reduced from 94.0 mg L-1 to 22.0 mg L-1 after the fifth electrochemical degradation. Therefore, PbO2 mesh cylinder electrode in the tube cylinder was promising for the electrochemical degradation of the textile effluent.