• Title/Summary/Keyword: Energy salt

Search Result 725, Processing Time 0.028 seconds

Study of Nonstoichiometry and Physical Properties of the $Ca_xEu_{1-x}FeO_{3-y}$ System

  • Roh, Kwon-Sun;Ryu, Kwang-Sun;Ryu, Kwang-Hyun;Yo, Chul-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.541-545
    • /
    • 1994
  • A series of samples of the ${Ca_xEu_{1-x}FeO_{3-y}$ (x=0.00, 0.25, 0.50, 0.75, and 1.00) system has been prepared at $1,250^{\circ}C$ under an atmospheric air pressure. X-ray diffraction analysis of the solid solution assigns the structure of the compositions of x=0.00, 0.25, 0.50, and 0.75 to the orthoferrite-type orthorhombic system, and that of x=1.00 to the brownmillerite-type orthorhombic one. The mole ratios of $Fe^{4+}$ ion in the solid solutions or ${\tau}$ values were determined by the Mohr's salt analysis and nonstoichiometric chemical formulas of the system were formulated from x, ${\tau}$, and y values. From the result of the Mossbauer spectroscopy, the coordination and magnetic property of the iron ion are discussed. The electrical conductivities are measured as a function of temperature. The activation energy is minimum at the composition of x=0.25. The conduction mechanism can be explained by the hopping of electrons between the mixed valences of $Fe^{3+}\;and\;Fe^{4+}$ ions.

Photophysical Properties of 1,3-Dimethylnaphtho[1,2-e]uracil

  • Shim, Sang-Chul;Shin, Eun-Ju;Park, Seung-Ki;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.196-200
    • /
    • 1986
  • The solvent change and salt do not affect the fluorescence quantum yield of 1,3-dimethylnaphtho[1,2-e]uracil indicating the considerable energy gap between the lowest singlet $({\pi},\;{\pi}^{\ast})\;and\;(n,\;{\pi}^{\ast})$ states in the compound. The results are consistent with the strong quenching of fluorescence by ethyl iodide. Fluorescence quantum yield is nearly independent of temperature, probably due to the relatively inefficient internal conversion. Unusual spectral difference is observed in isopentane and ethanol at 77K. The temperature dependence of emission in isopentane and in ethanol suggests that the increase of charge transfer character by the conformational change in isopentane leads to the structureless and red-shifted fluorescence, while in ethanol the decrease of the charge transfer character by the hydrogen bonding interaction results in the structured and blue-shifted fluorescence along with phosphorescence at the low temperature. Temperature dependence of emission in poly(methylmethacrylate) matrix indicates that $T_1{\to}S_0$ radiationless decay is an important process responsible for the strong temperature dependence of phosphorescence.

Development of home meal replacement products by food processing and packaging technology (식품 가공기술과 포장기술을 활용한 가정대용식 제품 개발)

  • Yu, A-Reum;Choi, Yun-Sang;Hong, Jung Sun;Choi, Hee-Don
    • Food Science and Industry
    • /
    • v.50 no.3
    • /
    • pp.39-50
    • /
    • 2017
  • In order to secure competitiveness of the home meal replacement (HMR) industry from a long-term perspective, development of packaging and processing technologies must be achieved. The development of technology that can secure freshness, nutrition, and taste but secures the shelf life is the key to the future growth of HMR. The future of HMR can be considered in terms of nutrition, environment and safety. From the nutritional point of view, it is expected that development of healthy HMR such as low-salt, low-sugar, low-fat, and high fiber and premium HMR with functional ingredient enhanced, and personalized HMR for silver, infant and patients will be done. And it is expected that development of HMR utilizing environmentally friendly food or local food, development of energy reduction and environmentally friendly disinfection technology, development of environmentally friendly packaging material, and providing information on HMR preparation using QR code and RFID from the environmental and safe point of view.

Influence of ZrO2 Particulates on Corrosion Resistance of Magnesium Alloy Coated by Plasma Electrolytic Oxidation (플라즈마 전해산화 처리된 마그네슘 합금의 내부식성에 미치는 코팅층 내 지르코니아 입자 영향)

  • Namgung, Seung;Ko, Young Gun;Shin, Ki Ryong;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.813-818
    • /
    • 2010
  • In current automobile and electronic industries, the use of magnesium alloys where both energy and weight saving are attainable is increasing. Despite their light weight, there has been an inherent drawback arising from the surface vulnerable to be oxidized with ease, specifically under corrosive environments. To protect magnesium alloy from corrosion, the present work deals with the electrochemical response of the oxide layer on magnesium alloy specimen prepared by plasma electrolytic oxidation (PEO) method in an electrolyte with zirconia powder. Surface observation using scanning electron microscopy evidences that a number of zirconia particles are effectively incorporated into oxide layer. From the results of potentio-dynamic tests in 3.5 wt% NaCl solution, the PEO-treated sample containing zirconia particles shows better corrosion properties than that without zirconia, which is the result of zirconia incorporation into the coating layer. Corrosion resistance is also measured by utilizing salt spray tests for 120 hrs.

Investigation of neural network-based cathode potential monitoring to support nuclear safeguards of electrorefining in pyroprocessing

  • Jung, Young-Eun;Ahn, Seong-Kyu;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.644-652
    • /
    • 2022
  • During the pyroprocessing operation, various signals can be collected by process monitoring (PM). These signals are utilized to diagnose process states. In this study, feasibility of using PM for nuclear safeguards of electrorefining operation was examined based on the use of machine learning for detecting off-normal operations. The off-normal operation, in this study, is defined as co-deposition of key elements through reduction on cathode. The monitored process signal selected for PM was cathode potential. The necessary data were produced through electrodeposition experiments in a laboratory molten salt system. Model-based cathodic surface area data were also generated and used to support model development. Computer models for classification were developed using a series of recurrent neural network architectures. The concept of transfer learning was also employed by combining pre-training and fine-tuning to minimize data requirement for training. The resulting models were found to classify the normal and the off-normal operation states with a 95% accuracy. With the availability of more process data, the approach is expected to have higher reliability.

An evaluation of power conversion systems for land-based nuclear microreactors: Can aeroderivative engines facilitate near-term deployment?

  • Guillen, D.P.;McDaniel, P.J.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1482-1494
    • /
    • 2022
  • Power conversion cycles (Subcritical Steam, Supercritical Steam, Open Air Brayton, Recuperated Air Brayton, Combined Cycle, Closed Brayton Supercritical CO2 (sCO2), and Stirling) are evaluated for land-based nuclear microreactors based on technical maturity, system efficiency, size, cost and maintainability, safety implications, and siting considerations. Based upon these criteria, Air Brayton systems were selected for further evaluation. A brief history of the development and applications of Brayton power systems is given, followed by a description of how these thermal-to-electrical energy conversion systems might be integrated with a nuclear microreactor. Modeling is performed for optimized cycles operating at 3 MW(e) with turbine inlet temperatures of 500 ℃, 650 ℃ and 850 ℃, corresponding to: a) sodium fast, b) molten salt or heat pipe, and c) helium or sodium thermal reactors, coupled with three types of Brayton power conversion units (PCUs): 1) simple open-cycle gas turbine, 2) recuperated open-cycle gas turbine, and 3) recuperated and intercooled open-cycle gas turbine. Aeroderivative turboshaft engines employing the simple Brayton cycle and two industrial gas turbine engines employing recuperated air Brayton cycles are also analyzed. These engines offer mature technology that can facilitate near-term deployment with a modest improvement in efficiency.

Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate (음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구)

  • Lee, Myung-Gu;Park, Chul-Hwan;Lee, Do-Hoon;Kim, Tak-Hyun;Lee, Byung-Hwan;Lee, Jin-Won;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.90-95
    • /
    • 2008
  • In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.

Architecture and Transport Properties of Membranes out of Graphene (그래핀에 기초한 막의 구조와 물질 전달 성질 개관)

  • Buchheim, Jakob;Wyss, Roman M.;Kim, Chang-Min;Deng, Mengmeng;Park, Hyung Gyu
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.239-252
    • /
    • 2016
  • Two-dimensional materials offer unique characteristics for membrane applications to water technology. With its atomic thickness, availability and stackability, graphene in particular is attracting attention in the research and industrial communities. Here, we present a brief overview of the recent research activities in this rising topic with bringing two membrane architecture into focus. Pristine graphene in single- and polycrystallinity poses a unique diffusion barrier property for most of chemical species at broad ambient conditions. If well designed and controlled, physical and chemical perforation can turn this barrier layer to a thinnest feasible membrane that permits ultimate permeation at given pore sizes. For subcontinuum pores, both molecular dynamics simulations and experiments predict potential salt rejection to envisage a seawater desalination application. Another novel membrane architecture is a stack of individual layers of 2D materials. When graphene-based platelets are chemically modified and stacked, the interplanar spacing forms a narrow transport pathway capable of separation of solvated ions from pure water. Bearing unbeknownst permeance and selectivity, both membrane architecture - ultrathin porous graphene and stacked platelets - offer a promising prospect for new extraordinary membranes for water technology applications.

Effect of Graded Levels of Rice Mill Feed (RMF) Supplementation on Intake, Nutrient Digestibility, Microbial N Yield and Growth Rate of Native (Bos Indicus) Bulls Fed Rice Straw Alone

  • Chowdhury, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.5
    • /
    • pp.445-454
    • /
    • 1997
  • Rice bran commonly available in Bangladesh is a mixture of rice hulls (60%), bran (35%) and polishing (5%), referred here as rice mill feed (RMF). Dose response effect of RMF supplementation to a straw diet including a zero level was measured on the intake, digestibility, nitrogen balance, microbial N yield and growth rate of growing native (Bos indicus) bulls. Twelve bulls of 33 months old and $272{\pm}31.5kg$ weight were randomly allocated to diets having 0 (T1), 1 (T2) and 2 (T3) kg RMF in addition to 200 g wheat bran, 200 g molasses, 60 g salt and 30 g oyestershe\l powder. Concentrate intake was 5.5, 19.2 and 29.5% of the dietary intake for the T1, T2 and T3 treatment respectively. RMF supplementation had no significant effect on the straw DM intake. However, with the increasing levels of RMF supplementation, total DM & digestible OM intake and the whole gut digestibilities of DM, OM, N & ADF increased but in deminishig return. Total microbial N yield estimated from the urinary purine excretion were 15.35, 26.56 and 38.44 g/d for the treatment T1, T2 and T3 respectively. Both the N intake and the N balance increased linearly in response to increasing level of RMF. Supplementation of RMF linearly increased the energy intake and dietary energy concentration. Growth rate in the T1, T2 and T3 treatments were 112, 125 and 250 g/d respctively. The basal N excretion and the maintenance energy requirement of the experimental animals were estimated to be 615 mg/kg $W^{0.75}/d$ and 447 kJ/kg $W^{0.75}/d$ respectively. The estimated efficiency on N utilization was 0.83 mg/mg of N intake ($r^2=0.997$) while the efficiency of metabolizable energy utilization for growth was 0.15. Since animal refused higher levels of RMF, inclusion up to 2 kg level (about 25% of the total DM intake) appears to have no depressing effect on the performances of animal. However, RMF itself fail to meet the critical nutrient need of the rumen microbes. Therefore response of supplementing RMF after correcting the critical nutrient deficiency need to be studied.

A Study for Recoverability of Iron Resource in Red Mud (레드머드 내 철 자원 회수 가능성 고찰)

  • Kim, Bong-Ju;Kwon, Jang-Soon;Koh, Yong-Kwon;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.297-306
    • /
    • 2020
  • The red mud generated from bauxite during the Bayer alumina production process has been regarded as an industrial waste due to the high alkaline property and high content of Na. Despite of its environmental problem, various studies for recovery of the valuable resources from red mud has been also carried out because of high content (25.7 wt.% as Fe2O3 in this study) of iron in red mud. In order to recover the iron resource in the red mud, microwave heating experiments were performed with adding of activated carbon and elemental sulfur to the red mud. Through the microwave heating the powdered red mud mixtures converted to porous and vitrified solid aggregates. The vitrified aggregates produced by microwave heating are composed of goethite, zero valent iron (Fe0), pyrrhotite and pyrite. And then, the microwave heating samples were dissolved in the aqua regia solution, and Fe precipitates were obtained as a Fe-chlorides by adding of NaCl salt in the aqua regia solution. The Fe recovery rates in the Fe-chloride precipitates showed differences depending on the experimental mixture conditions, and Fe grades of the end products are 49.0 wt.%, 58.0 wt.% and 59.5 wt.% under mixture conditions of red mud, red mud + activated carbon, and red mud + activated carbon + elemental S, respectively. The Fe content of 56.0 wt.% is generally known as the grade value of Fe in a iron ore for iron production, and the Fe grades of microwave heating samples with adding activated carbon and elemental S in this study are higher than the grade value of 56.0 wt.%.