• Title/Summary/Keyword: Energy salt

Search Result 725, Processing Time 0.025 seconds

New Solid Polymer Electrolyte for Lithium Secondary Batteries

  • Park, Jung-Ki;Lee, Yong-Min;Lee, Jun-Young;Ryou, Myeong-Hyeon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.67-68
    • /
    • 2006
  • Solid polymer electrolyte is very important in the applications to high energy density lithium batteries of high safety. In this work, solid polymer electrolytes based on PE non-woven matrix, hybrid salt, and anion receptor were successfully prepared. They could provide high ion conduction phase with maintaining mechanical strength. They also showed high electrochemical stability and lithium ion transference number. This new type of solid polymer electrolyte is expected to be a good candidate for rechargeable solid state lithium secondary batteries.

  • PDF

SEPARATION OF CsCl FROM LiCl-CsCl MOLTEN SALT BY COLD FINGER MELT CRYSTALLIZATION

  • Versey, Joshua R.;Phongikaroon, Supathorn;Simpson, Michael F.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.395-406
    • /
    • 2014
  • This study provides a fundamental understanding of a cold finger melt crystallization technique by exploring the heat and mass transfer processes of cold finger separation. A series of experiments were performed using a simplified LiCl-CsCl system by varying initial CsCl concentrations (1, 3, 5, and 7.5 wt%), cold finger cooling rates (7.4, 9.8, 12.3, and 14.9 L/min), and separation times (5, 10, 15, and 30 min). Results showed a potential recycling rate of 0.36 g/min with a purity of 0.33 wt% CsCl in LiCl. A CsCl concentrated drip formation was found to decrease crystal purity especially for smaller crystal formations. Dimensionless heat and mass transfer correlations showed that separation production is primarily influenced by convective transfer controlled by cooling gas flow rate, where correlations are more accurate for slower cooling gas flow rates.

Preparation of Al2O3-ZrO2 Composite Powders by the Use of Emulsions: I. Thermodynamic Model of the Emulsion Stability (에멀젼을 이용한 Al2O3-ZrO2 복합분체의 제조 : I. 에멀젼 안정화에 대한 열역학적 모델)

  • 한상훈;백종규;송승룡
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.6
    • /
    • pp.593-601
    • /
    • 1987
  • A thermodynamic model to predict the stability of the water-in-oil type emulsion and the size of the droplets in stable emulsions was developed. Using this model, the effects of various factors government the droplet size in the metal salt solution-kerosene-span 80 system for the preparation of Al2O3-ZrO2 composite powders were investigated. It was shown that the given emulsion systems were thermodynamically unstable in every case but could be kinetically meta stable. When radius ofthe droplet was below nm, the increase in entropy change due to the configurational contribution of small droplets dominated the total free energy change for emulsification. The optimum conditions under which smaller deoplet was obtained were proposed and the validity of the model was proved with diameters of the droplet and composite powders experimentally determined.

  • PDF

Reaction Processes of the Formation of Mg-Al Spinel by a Thermal Decomposition of a Mixed Sulfate Hydrate (복합 황산염 수화물의 열분해에 의한 Mg-Al 스피넬의 생성반응)

  • 박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.6
    • /
    • pp.71-75
    • /
    • 1986
  • The forming reaction processes of magnesium aluminate spinel by a thermal decomposition of sulfate hydrate were studied with DTA, TG. SEM and X-ray powder diffraction methods. The hydrous salt composed of the mixture of the two compounds of $MgSO_4$ $6H_2O$ and ${AL_2}({SO_4})_17H_2O_3$ in which both sulfates were crystalline. On heating the hydrous slat the crystalline magnesium and aluminum sulfate anhydride to amorphous alumina magnesium sulfate anhydride decomposed to amorphous magnesia and these amorphous oxides reacted completely each other to form a spinel at $1000^{\circ}C$ The apparent activation energy of forming reaction of spinel was 36.5 kcal/mole($900^{\circ}C$~$1000^{\circ}C$) The crystallite size of spinel obtained at $1000^{\circ}C$ after 1 h was 380$\AA$.

  • PDF

Efficiency Evaluation of Wind Power Blade Surface Cleaning using Brush and Water Jet (브러시 및 워터젯을 이용한 풍력 발전 블레이드 표면 청소 효율 측정)

  • Jeon, Minseok;Kim, Byunggon;Park, Sora;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.977-982
    • /
    • 2013
  • Blades of wind energy plants are exposed to external shocks or internal cracks during operation. Furthermore, the blade surfaces can be contaminated by substances such as dust, blood of birds, salt or insects which can decrease the electricity generation efficiency significantly. For this reason, many blade cleaning companies started to appear and a variety of methods for cleaning were suggested. Despite these diverse methods, there has been no study to investigate how effectively to clean the substances in quantitative manner. In this paper, the cleaning efficiency of two rotor blade cleaning methods, brush and water-jet, is examined through experiments by changing operating parameters. Then, the optimal operating conditions for both methods are derived.

Studies on the One Bath Exhaust Dyeing System of Polyester/Cationized Cotton Blends with Disperse Dye/Reactive Dye (폴리에스테르/카티온화 면 혼방품의 분산염료/반응성염료에 의한 일욕염색계에 관한 연구)

  • 성우경
    • Textile Coloration and Finishing
    • /
    • v.10 no.2
    • /
    • pp.18-28
    • /
    • 1998
  • in order to overcome disadvantage of the conventional two bath dyeing method of polyester/cotton blends, it had prompted significant effort to the development of the one bath dyeing method which can accomplish sayings in time, energy and water usage. Also, when dyeing polyester/cotton blends by the one bath dyeing method, the high salt concentrations needed for the reactive dye can cause particles of disperse dye, used for the polyester component, to aggregate. A supplementary problem that can occasionally be happened is the change of hue that occurs on dyed polyester in an alkaline dyebath. To improve dyeing property of polyester/cotton blends, cotton component was pretreated with epichlolohydrine-trimethylamine hydrochloride in aqueous solution of sodium hydroxide to produce a cationized cotton that can be dyed under neutral conditions with reactive dye in a non-electrolytic or il little electrolytic dyebath. The one bath dyeing method of polyester/cationized cotton blends with disperse dye/reactive dye mixture resulted in a satisfactory dyeing property and color yield in comparison with ordinary two bath dyeing method.

  • PDF

The Coloring Effect of Glasses by Ag+ Ion Exchange (Ag+ 이온교환에 따른 유리의 착색 효과)

  • 이용근;이동인;윤종석;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.499-504
    • /
    • 1989
  • Coloring effect, mechanical properties resulting from silver ions exchange of glasses immersed into the mixed molten salt of KNO3 and AgNO3 were investigated in this study. Ion exchange coloring of glasses made it possible to obtain glasses with a range from yellow to yellowish-brown, and spectral transmittance was investigated. The amount of ion exchange and peneration depth increased with treatment temperature and time. The activation energy decreased with mole fraction of AgNO3. It can be seem that the bending strength of ion exchanged glasses were 3~4 times higher than the parent glass and Ag+ colloids prevented from increasing surface microhardness.

  • PDF

Corrosion Resistance of SD460 Reinforcing Rod by Ceramic Coating (SD460 철근의 세라믹 코팅에 의한 내식성 향상연구)

  • Park, Ki Y.;Lee, Jong K.;Hong, Seok W.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.157-161
    • /
    • 2009
  • The corrosion resistance of reinforcing bar was studied to endure the marine environment during shipment. The red rust on the surface did not damage the adherence in the concrete structures, especially in highly alkaline environment, but made the consumer doubt of the quality. The passivation process by alkalization of the quenching water in the tempcore process failed to endure the long shipping period. The ceramic coating by sol-gel process improved the corrosion resistance without damaging the mechanical properties and adherence between concrete and reinfiorcing bar. Optimal concentration of the coating solution and coating temperature were tested. No additional energy was necessary for the coating process by spraying during cooling process, resulting simplified process and low cost. Salt spray test, cyclic corrosion test and atmospheric test were employed to confirm the resistance. The corrosion rates were presented by rating number and polarization resistance. The coating layer was examined by FIB, XRD and SEM etc.

Tight-binding Electronic Structure Study of the β'- and β''-Phases of the Organic Conducting Salts (BEDT-TTF)2[(IBr2)0.2(BrICl)0.1(ICl2)0.7]

  • Koo, Hyun-Joo;WhangBo, Myung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.241-245
    • /
    • 2007
  • The electronic structures of the new organic conducting salts, the β'- and β''-phases of (BEDT-TTF)2[(IBr2)0.2(BrICl)0.1(ICl2)0.7], were examined by calculating their electronic band structures, Fermi surfaces and HOMO-HOMO interaction energies using the extended Huckel tight binding method. On the basis of these calculations, we probed why the β'-phase is semiconducting while the β ''-phase is metallic.

Polymer Electrolyte Membranes and their Applications to Membranes, Fuel Cells and Solar Cells

  • Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.29-32
    • /
    • 2003
  • Polymer electrolyte membranes are developed for the applications to facilitated transport membranes, fuel cells and solar cells. The polymer electrolyte membranes containing silver salt show the remarkably high separation performance for olefin/paraffin mixture in the solid state; the propylene permeance is 45 GPU and the ideal selectivity of propylene/propane is 15,000. For fuel cell membranes, the effects of the presence and size of the proton transport channels on the proton conductivity and methanol permeability were investigated. The cell performance for dye-sensitized solar cells employing polymer electrolytes are measured under light illumination. The overall energy conversion efficiency reaches 5.44 % at 10 ㎽/$\textrm{cm}^2$, to our knowledge the highest value ever reported in the polymer electrolytes.

  • PDF