• Title/Summary/Keyword: Energy salt

Search Result 725, Processing Time 0.029 seconds

Effect of Age-related Changes in Taste Perception on Dietary Intake in Korean Elderly (노인의 영양상태에 미각변화가 미치는 영향)

  • 김화영
    • Journal of Nutrition and Health
    • /
    • v.30 no.8
    • /
    • pp.995-1008
    • /
    • 1997
  • This study was performed to investigate the change in taste perception during aging and its effects on dietary intake in Korean elderly. The subjects were female aged 65 through 90 in the Anyang area, and college women were included as a comparison group . Dietary intake of the elderly(n=155) and young subjects (n=38) was measured by a 3 day diet record. The taste threshold and 'just right' concentrations(JRC) for sweet and salty tastes were assessed by sensory evaluation . Sucrose solution (0.0.,0.4,0.6,0.8,1.0, 1.2%) and salt solution(0, 0.02, 0.03,0.06,0.09,0.12,0.15%) were used to establish thresholds. for JRC assessment, four suprathreshold sucrose concentrations of 5, 8, 11 and 14% in orange-pineapple flavored juice and salt concentrations of 0.20, 0.34, 0.50and 0.75% in beef stock were prepared. Mean intakes of energy, protein , vitamin A, thiamin , riboflavin, niacin ,calcium and iron of the elderly were below the Korean Recommended Dietary allowances. The elderly showed higher taste thresholds than young subjects of both sweet and salty tastes consumed less calories. Needs to bespecified. The older subjects having high threshold or JRCs for sweet and salty tastes consumed fewer calories from protein and fat. Pearson correlation coefficients was between JRC for sweet and salty tastes 0.54(p<0.01). The correlation coefficients between tastes threshold and nutrient intakes were very low for both age groups. Unlike the college women, in the elderly the JRC of sweet taste of the orange-pineapple juice were negatively correlated with intakes of energy, protein, fats, thiamin , riboflavin , niacin ,vitamin C , iron and consumption of meat and egg food groups (p<0.01). In summation age-related alterations in sweet and salty taste perception were observed in the elderly and dietary intakes of the elderly see to be influenced by these taste perception changes.

  • PDF

Biodegradation of Aniline by Pseudomonas Rhodesiae isolated from River Water (강물에서 분리한 Pseudomonas rhodesiae의 아닐린 분해)

  • Kim, Hyun-Ju;Kim, Jin-Cheol;Kim, Heung-Tae;Choi, Gyung-Ja;Choi, Do-Il;Kim, Hong-Gi;Cho, Kwang-Yun
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.2
    • /
    • pp.74-78
    • /
    • 2001
  • Two Bacterial strains 1-C and 51-C capable of utilizing aniline as a sole source of carbon and energy were isolated from river waters. Both strains were identified as Pseudomonas rhodesiae based on their physiological and biochemical characteristics and 16S rRNA gene sequence. The strains were able to grow on the mineral salt media containing aniline at concentrations up to 6,000 ${\mu}g/mL$. Pseudomonas rhodesiae 51-C completely degraded aniline in a mineral salt medium containing 300 ${\mu}g/mL$ of aniline as a sole carbon and energy source within 16 hours. The optimum pH and temperature for its growth and aniline degradation were 7.0 and $30^{\circ}C{\sim}35^{\circ}C$, respectively. This is the first report of aniline degradation by P. rhodesiae strains.

  • PDF

Characteristic of Size-Resolved Water-Soluble Organic Carbon in Atmospheric Aerosol Particles Observed during Daytime and Nighttime in an Urban Area (도시지역 낮.밤 대기에어로졸의 입경 별 수용성 유기탄소의 특성)

  • Park, Seung Shik;Shin, Dong Myung
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.7-21
    • /
    • 2013
  • Twelve-hour size-resolved atmospheric aerosols were measured to determine size distributions of water-soluble organic carbon(WSOC) during daytime and nighttime, and to investigate sources and formation pathways of WSOC in individual particle size classes. Mass, WSOC, ${NO_3}^-$, $K^+$, and $Cl^-$ at day and night showed mostly bimodal size distributions, peaking at the size range of $0.32-0.55{\mu}m$(condensation mode) and $3.1-6.2{\mu}m$(coarse mode), respectively, with a predominant condensation mode and a minor coarse mode. While ${NH_4}^+$ and ${SO_4}^{2-}$ showed unimodal size distributions which peaked between 0.32 and $0.55{\mu}m$. WSOC was enriched into nuclei mode particles(< $0.1{\mu}m$) based on the WSOC-to-mass and WSOC-to-water soluble species ratios. The sources and formation mechanisms of WSOC were inferred in reference to the size distribution characteristics of inorganic species(${SO_4}^{2-}$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, and $Cl^-$) and carbon monoxide. Nuclei mode WSOC was likely associated with primary combustion sources during daytime and nighttime. Among significant sources contributing to the condensation mode WSOC were homogeneous gas-phase oxidation of VOCs, primary combustion emissions, and fresh(or slightly aged) biomass burning aerosols. The droplet mode WSOC could be attributed to aqueous oxidation of VOCs in clouds, cloud-processed biomass burning aerosols, and small contributions from primary combustion sources. From the correlations between WSOC and soil-related particles, and between WSOC and sea-salt particles, it is suggested that the coarse mode WSOC during daytime is likely to condense on the soil-related particles($K^+$ and $Ca^{2+}$), while the WSOC in the coarse fraction during nighttime is likely associated with the sea-salt particles($Na^+$).

Chemical Treatment of Low-level Radioactive Liquid Wastes(II) (The Determination of Cation Exchange Capacity on various Clay Minerals)

  • Lee, Sang-Hoon;Sung, Nak-Jun
    • Nuclear Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.75-81
    • /
    • 1977
  • This experiment has been carried out to determine the pH dependent cation exchange capacity concerning the sorption phenomenon of long-lived radionuclides contained in low-level liquid radioactive waste on various clay minerals. The pH dependent cation exchange capacity determined by Sawhney's method are used to the analysis of sorption phenomenon. About 70 percent of the total cation exchange capacity is contributed by the pH dependent CEC due to the negative charge originated naturally in clays in case of clinoptilolite, vermiculite and sodalite. It is sugested in this test that the high neutral salt CEC, that is, highly charged clays would show good fixation yield. The removal of radionuclides at the pH range more than pH 9 is considered the hydroxide precipitation of metal ion rather than the cation exchange. The Na-clay prepared by the method of successive isomorphic substitution with electrolyte showed a considerable improvement in removal efficiency for the decontamination.

  • PDF

Effect of Pyrolysis temperature on TiO2 Nanoparticles Synthesized by a Salt-assisted Ultrasonic Spray Pyrolysis Process (염 보조 초음파 분무 열분해 공정으로 합성된 TiO2 나노입자의 특성에 열분해 온도가 미치는 영향)

  • Yoo, Jae-Hyun;Ji, Myeong-Jun;Park, Woo-Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.237-242
    • /
    • 2019
  • In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate ($NaNO_3$) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide ($TiO_2$) particles. The added $NaNO_3$ prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing $NaNO_3$ and NaF from the secondary particles, which consist of the salts and $TiO_2$ nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized $TiO_2$ nanoparticles have a size of approximately 2-10 nm a bandgap energy of 3.1-3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized $TiO_2$ nanoparticles.

Experimental Studies on Limiting Concentration of High Saline Feed Solution in Electrodialysis (전기투석 시스템에서 고농도 수용액의 한계 농축에 대한 연구)

  • Junsu, Jang;Bumjoo, Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.64-68
    • /
    • 2023
  • The salt concentration process in electrodialysis, which uses electrical energy to enhance ion concentrations in an aqueous electrolyte solution, has been studied on the transfer phenomenon of ions and water molecules over the ion exchange membrane. In this paper, we investigated various parameters for limiting concentration of electrolyte solution and the electroosmosis phenomenon in an electrodialysis system by varying salt concentration of electrolyte solution. The electroosmotic water transport was analyzed by measuring the ions and water fluxes in electrolyte solutions having two different NaCl concentrations (NaCl 2M/4M), and concentration change was observed for various volume ratios of the diluted reservoir to the concentration one As a result, it was found that the higher concentration of the aqueous electrolyte solution, the lower electroosmosis, and the higher volume ratio led to a higher concentration in the dilute reservoir, so the limiting concentration was enhanced and the specific energy consumption decreased.

High Temperature Thermochemical Treatment and Characterization of Sepiolite for $CO_2$ Storage ($CO_2$ 저장용 Sepiolite의 고온 열화학처리 및 특성평가)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.4
    • /
    • pp.425-433
    • /
    • 2006
  • Sepiolite was selected as a mineral carbonation candidate ore for carbon dioxide sequestration. Carbonation salt formation from alkaline earth metal ingredient needs to dehydroxylation of sepiolite at high temperature. An evident dehydroxylation was observed over $800^{\circ}C$ and the variations of sepiolite characteristics after high temperature treatment was synthetically evaluated. Remarkable weight loss were measured after high temperature thermochemical reaction then crystallographic and spectroscopic changes were analyzed. The resulted alkaline earth metal oxides could explained by dehydroxylation based on thermochemical reaction.

Effects of anode and current collector materials on the power density of solid oxide electrolyte direct carbon fuel cell (고체산화물 전해질 직접탄소 연료전지의 전극 및 집전부 재질이 출력밀도에 미치는 영향)

  • Hwang, J.Y.;Yoon, J.E.;Kang, K.;Kim, J.H.;Lee, B.J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.392-394
    • /
    • 2009
  • Direct Carbon Fuel Cells (DCFCs) generates electricity directly converting the chemical energy in coal. In the present study, effects of anode and current collector materials on the power density of DCFC are investigated experimentally. The adopted DCFC system is combined type of solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) with the use of a liquid-molten salt anode and a solid oxide electrolyte, proposed by SRI. Power densities of 25 mm button cells with various combination of anode materials and current collector materials are measured.

  • PDF

Physicochemical Study of Thermal Treated Serpentine for Carbon Dioxide Sequestration (이산화탄소 포획을 위한 serpentine의 열처리와 물리화학적 특성 변화 연구)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.301-308
    • /
    • 2007
  • Silicate mineral serpentine with magnesium and calcium was selected as a mineral carbonation mediators for carbon dioxide storage. Serpentine has various metallic elements as an oxides form of magnesium, iron, calcium, aluminium etc. Magnesium and calcium could be carbonation salt preferentially than other metal component within serpentine. Systemic thermochemical treatment for serpentine could change physicochemical properties like a surface area and pore dimensions. Due to the rapid chemical reaction rate depended on dimensional values, carbonation formation could determined by surface property change of thermochemical treated serpentine.

The Effect of Leveling Agents in the ULLR of Cotton

  • Kim, Tae-Kyung;Kim, Jin-Soo;Park, Hee-Moon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.03a
    • /
    • pp.175-176
    • /
    • 2009
  • Energy saving and environment-friendly dyeing method of cotton with reactive dyes is the ultra low liquor ratio dyeing because it reduces the total quantity of water, dye, salt and alkali during the dyeing process in the effluent as well as the energy consumption. However, this method may not guarantee the quality of the dyeing results due to the specs or unlevel dyeing depending upon the dyes used. The study has focused on the effect of leveling agents in the dyeing of cotton with reactive dyes under the ultra low liquor ratio (1:5). Especially Sunfix N/B MF-D which was selected for ULLR showed low-leveled dyeing comparing with the other MF-D series. A leveling agent having polycarbonate structure increased LDF values of Sunfix N/B MF-D without changing of dyeing fastness. We recommend some leveling agents to improve the leveling behavior for ULLR dyeing.

  • PDF