• Title/Summary/Keyword: Energy release rate

Search Result 437, Processing Time 0.022 seconds

The Froude Scaling Study on the Ventilation of Non-isothermal Concentrated Fume from the Semi-closed Space (반밀폐형 공간에서 비등온 고농도 연무의 배연산출량 산정을 위한 Froude 상사연구)

  • Chang, Hyuk-Sang;Choi, Byung-Il;Park, Jae-Cheul;Kim, Myung-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.877-885
    • /
    • 2005
  • The Froude scaling between the prototype and the model was tried to estimate the necessary ventilation rate for non-isothermal concentrated fume from the semi-closed inner space. Based on the non-dimensional similitude equations derived from the Zukoski plume rise analysis, the scaling experiments were done to verify the relationship of the non-dimensional energy release rate and the non-dimensional mass flow rate by using two different scaled volume models, model A ($1\;m{\times}1\;m{\times}1\;m$) and model B ($0.5\;m{\times}0.5\;m{\times}0.5\;m$). The experimental results showed that the theoretical similitude between the models is acceptable for the prediction of ventilation rate of the concentrated fume. The maximum energy release rate used for the experiments was $20\;kW/m^3$. In the experimental range, the similitude between the energy release rate and the ventilation mass flow rate was well defined and the necessary ventilation rates were 20-30% higher than the stoichiometric ventilation mass flow rate. Based on results of current study, the design of the local air ventilation system can be improved by correcting the effects of buoyancy and diffusion of the non-isothermal concentrated fume.

Characteristics of Fracture Energy on Steel Fiber-Reinforced Lightweight Polymer Concrete

  • Youn, Joon-No;Sung, Chan-Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.11-19
    • /
    • 2003
  • In this study, unsaturated polyester resin, artificial lightweight coarse aggregate, artificial lightweight fine aggregate, heavy calcium carbonate and steel fiber were used to produce a steel fiber-reinforced lightweight polymer concrete with which mechanical properties were examined. Results of this experimental study showed that the flexural strength of unnotched steel fiber-reinforced lightweight polymer concrete increased from 8.61 to 13.96 MPa when mixing ratio of fiber content increased from 0 to 1.5%. Stress intensity factors($K_{IC}$) increased with increasing fiber content ratio while it did not increase with increasing notch ratio. Energy release rate ($G_{IC}$) turned out to depend upon the notch size, and it increased with increasing steel fiber content.

Numerical study of bonded composite patch repair in damaged laminate composites

  • Azzeddine, Nacira;Benkheira, Ameur;Fekih, Sidi Mohamed;Belhouari, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.151-168
    • /
    • 2020
  • The present study deals with the repair of composite structures by bonding composite patches. The composite structure is a carbon/epoxy laminate with stacking sequence [45/-45/0/90]S. The damaged zone is simulated by a central crack and repaired by bonding symmetrical composite patches. The repair is carried out using composite patches laminated from the same elemental folds as those of the cracked specimen. Three-dimensional finite element method is used to determine the energy release rate along the front of repaired crack. The effects of the repair technique used single or double patch, the stacking sequence of the cracked composite patch and the adhesive properties were highlighted on the variations of the fracture energy in mode I and mixed mode I + II loading.

Suppression of interfacial crack for foam core sandwich panel with crack arrester

  • Hirose, Y.;Hojo, M.;Fujiyoshi, A.;Matsubara, G.
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.11-30
    • /
    • 2007
  • Since delamination often propagates at the interfacial layer between a surface skin and a foam core, a crack arrester is proposed for the suppression of the delamination. The arrester has a semi-cylindrical shape and is arranged in the foam core and is attached to the surface skin. Here, energy release rates and complex stress intensity factors are calculated using finite element analysis. Effects of the arrester size and its elastic moduli on the crack suppressing capability are investigated. Considerable reductions of the energy release rates at the crack tip are achieved as the crack tip approached the leading edge of the crack arrester. Thus, this new concept of a crack arrester may become a promising device to suppress crack initiation and propagation of the foam core sandwich panels.

A Study on the Heat-Storage/-Release Characteristics of a Regenerative Heat Exchanger Utilizing the Reversible Thermochemical Reaction of $Ca(OH)_2/CaO$ ($Ca(OH)_2/CaO$ 계의 가역 열화학 반응열을 이용한 축열식 열교환기의 축열 및 방열특성에 관한 연구)

  • Lee, Soo-Kag;Kim, Hong-Jea;Lee, Jin-Kook
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.22-30
    • /
    • 1989
  • Since the energy storage method by means of the thermochemical reaction has no heat loss by separating the reactants under the storage period, it is remarked as one of promising means particularly for long-term heat storage. In this study, the heat-storage/-release characteristics of the reversible chemical reaction cycle, $Ca(OH)_2/CaO$, is numerically analysed by a mathematical modelling. As a result, the effectiveness of the heat exchanger by the chemical heat storage method is considerably higher than that by the sensible heat storage method. It is found that the major parameters, which determines the effectiveness of the heat exchanger, are the mass flow rate and inlet temperature of fluid, the residence time, etc.. The heat-storage/-release period can be controlled by changing the operation conditions. It is expected that the results obtained here will supply useful informations in designing a regenerative heat exchanger utilizing the thermochemical reaction.

  • PDF

Interlaminar stresses and delamination of composite laminates under extension and bending

  • Nguyen, Tien Duong;Nguyen, Dang Hung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.733-751
    • /
    • 2007
  • The metis element method (Hung 1978) has been applied to analyse free edge interlaminar stresses and delamination in composite laminates, which are subjected to extension and bending. The paper recalls Lekhnitskii's solution for generalized plane strain state of composite laminate and Wang's singular solution for determination of stress singularity order and of eigen coefficients $C_m$ for delamination problem. Then the formulae of metis displacement finite element in two-dimensional problem are established. Computation of the stress intensity factors and the energy release rates are presented in details. The energy release rate, G, is computed by Irwin's virtual crack technique using metis elements. Finally, results of interlaminar stresses, the three stress intensity factors and the energy release rates for delamination crack in composite laminates under extension and bending are illustrated and compared with the literature to demonstrate the efficiency of the present method.

Modified S-FPZ Model for a Running Crack in Concrete (콘크리트의 연속적인 균열성장에 대한 수정 특이-파괴진행대 이론)

  • Yon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.802-810
    • /
    • 2003
  • In this paper, the modified singular fracture process zone (S-FPZ) model is proposed to consider variation of a fracture criterion for continuous crack propagation in concrete. The fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and crack closure stress (CCS) versus crack opening displacement (COD) relationship in the FPZ. The proposed model can simulate the estimated fracture energy of experimental results. The analysis results of the experimental data shows that specimen geometry and loading condition did not affect the CCS-COD relation. But the strain energy release rate is a function of not only specimen geometry but also crack extension. Until 25 mm crack extension, the strain energy release rate is a constant minimum value, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for an large size specimen. The fracture criterion remains the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localizing. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-tracking and micro-crack localizing behaviors of concrete.

The Evaluation of Fracture Toughness for Woven Carbon Fibered Reinforced Composite Materials (평직 탄소섬유강화 복합재료의 파괴인성평가)

  • Park, Hong-Sun;Lee, Woo-Hyung;Keum, Jin-Hwa;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.69-76
    • /
    • 2010
  • This study examined how the fracture toughness is affected according to the variation of the initial crack length and the fiber arranged angle using FEA method and experimental method. Therefore, the energy release rates were calculated and compared by J-integral method and VCCT(Virtual Crack Closure Technique). The results of fracture toughness test verified these results. At this time, the locus method was used in order to determine the energy release rate. When the results of FEA were compared with those of experiment, all of those decreased with the increase of angle between load and the fiber arranged direction. The decrease was due to reducing maximum load and stiffness, and the reason of reduction has been judged that the inplane shear stress.

Delamination of non-linear viscoelastic beams under bending in the plane of layers

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.297-313
    • /
    • 2023
  • This paper deals with delamination analysis of non-linear viscoelastic multilayered beam subjected to bending in the plane of the layers. For this purpose, first, a non-linear viscoelastic model is presented. In order to take into account the non-linear viscoelastic behaviour, a non-linear spring and a non-linear dashpot are assembled in series with a linear spring connected in parallel to a linear dashpot. The behaviours of the non-linear spring and dashpot are described by applying non-linear stress-strain and stress-rate of strain relationships, respectively. The constitutive law of the model is derived. Due to the non-linear spring and dashpot, the constitutive law is non-linear. This law is used for describing the time-dependent mechanical behaviour of the beam under consideration. The material properties involved in the constitutive law vary along the beam length due to the continuous material inhomogeneity of the layers. Solution of the strain energy release rate for the delamination is obtained by analyzing the balance of the energy with considering of the non-linear viscoelastic behaviour. The strain energy release rate is found also by using the complementary strain energy for verification. A parametric study is carried-out by using the solution obtained. The solutions derived and the results obtained help to understand the time-dependent delamination of non-linear viscoelastic beams under loading in the plane of layers.

Preparation and Release Characterization of Biodegradable Poly($\varepsilon$-caprolactone) Microcapsules Containing Tocopherol (토코페롤을 함유하는 생분해성 폴리($\varepsilon$-카프로락톤) 마이크로캡슐의 제조 및 방출 특성)

  • 박수진;김기석;민병각;홍성권
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.103-110
    • /
    • 2004
  • The biodegradable poly($\varepsilon$-caprolactone) (PCL) microcapsules containing tocopherol were prepared by oil-in-water emulsion solvent evaporation method. The features of the microcapsules were investigated in the manufacturing conditions and degradation behaviors. The form and structural feature of the microcapsules were measured by scanning electron microscope and X-ray diffraction, respectively. The surface free energy of the microcapsules was executed using contact angle measurement. As a result, the microcapsules were more stable and spherical with poly(vinyl alcohol) given in a surfactant. The surface free energy and crystallinity of microcapsules were decreased with increasing the core concentration, and degradation of PCL was occurred after 21 days. The release behaviors were examined by Uv/vis. spectrophotometer. It was found that the release rate of the microcapsules was increased with increasing the stirring rate, due to the increased interface between microcapsules and release media.