• Title/Summary/Keyword: Energy release model

Search Result 234, Processing Time 0.302 seconds

Calculation of The Core Damage & FP Release Behavior for The PHEBUS FPT0 Similar to Cold Leg Break Accident Using MELCOR

  • Park, Jong-Hwa;Cho, Song-Won;Kim, Hee-Dong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.637-642
    • /
    • 1996
  • This paper presents the analysis results for the core degradation processes and the fission product release of the PHEBUS FPT0 experiment using MELCOR1.8.3. The objective of this study is to assess models associated with the core damage and fission product behavior in MELCOR. The calculation results were much improved through sensitivity studies. Thermal/hydraulic behavior in the core and the circuit was well predicted under the intact core geometry. In non-eutectic model case. the UO$_2$ dissolution model in the MELCOR always showed such a tendency that the resulting dissolved UO$_2$ mass was small at the highly oxidized condition due to the model logic. Total H$_2$ generation mass was underpredicted because the stiffner was not modeled and the liner in the shroud was not allowed to be oxidized in MELCOR. Some difficulties were found in modeling the activation product were solved by manipulating the RN input associated with the initial fission product inventory. These problem were occurred because there are no control rod model in MELCOR. Generally the fission product release ratio showed a similar trend compared with the measured data except the activation product. which have no model to simulate in MELCOR.

  • PDF

An Analysis for Delaminations Using Energy Release Rate in CFRP Laminates (에너지 해방률을 이용한 CFRP 적층복합재료의 층간분리 평가)

  • Gang, Gi-Won;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2115-2122
    • /
    • 2000
  • The understanding of impact-induced delamination is important in safety and reliability of composite structure. In this study, a model for arrest toughness is proposed in consideration of fracture behavior of composite materials. Also, the probabilistic model is proposed to describe the variability of arrest toughness due to the nonhomogeneity of material. For these models, experiments were conducted on the Carbon/Epoxy composite plates with various thickness using the impact hammer. The elastic work factor used in J-Integral is applicable to the evaluation of energy release rate. The fracture behavior can be described by crack arrest concept and the arrest toughness is independent of the delamination size. Additionally, a probabilistic characteristics of arrest toughness is well described by the Weibull distribution function. A variation of arrest toughness increases with specimen thickness.

Predictive Contamination of Animal Products Due th the Inhalation of Air and the Ingestion of Soil of Cattle in an Accidental Release of Radioactive Materials - Focusing on Contaminative Influence for Milk (원자력 사고시 가축의 공기 흡입과 토양 섭취에 의한 축산물의 오염 - 우유에 대한 오염 영향을 중심으로)

  • Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Jeong, Hyo-Joon;Han, Moon-Hee;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.299-309
    • /
    • 2003
  • In an accidental release of radioactive materials to the environment the contaminative influence of animal products due to the inhalation of air and the ingestion of soil of livestock, both of which are dealt with as minor contaminative pathways in most radioecological models but may not be neglected, was investigated with the improvement of the Korean dynamic food chain model DYNACON Although mathematical models for both contaminative pathways have been established for considering all animal products and incorporated into the model, investigation was limited to milk. As a result, it was found that both pathways are influential in the contamination of milk in the case of an accidental release during the non-grazing period of dairy cows. In the case of an accidental release during the non-grazing period, the inhalation of air was more influential than the ingestion of soil in the early days following an accidental release. While, it was the opposite with the lapse of time. If precipitation is encountered during an accidental release, contaminative influence due to the ingestion of soil was greater compared with the cases of no precipitation, in general, because of a stealer deposition of radionuclides onto the ground. Precipitation during an accidental release was a less influential factor in $^{131}I$ (elemental iodine) contamination compared with the $^{137}Cs\;and\;^{90}Sr$ contaminations. In the case of an accidental release during the grazing period of dairy cows, the contaminative influence due to the inhalation of air was negligible.

Experimentally Evaluation of a Liquid Pool Spreading Model with Continuous Release (연속누출을 가지는 액체 풀 확산 모델의 실험적 평가)

  • KIM, TAEHOON;DO, KYU HYUNG;KIM, MYUNGBAE;HAN, YONG-SHIK;CHOI, BYUNG-IL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.659-665
    • /
    • 2015
  • In this study, an experimental investigation is performed for evaluation of a liquid pool spreading model with continuous release. The model considered in this study was developed based on a concept which means that the liquid pool spreading is governed by a balance between an inertia force from gravity and a frictional force from friction with the ground under the whole base of the liquid pool. For evaluation of the model, experimental study is performed. Experimental apparatus is setup for measuring release rate, spreading velocity, and evaporation rate from a liquid pool. The experimental results are compared with results from the model. By applying release and evaporation rates obtained from experiments to solving the model, liquid pool radius variation according to time can be obtained. For evaluation of an effect of friction force in the spreading model, results obtained from the models with and without the friction force are compared with those obtained from the experiments. As a result, it is shown that there exists a large deviation between the results obtained from the model without the friction force and the experimental results. On the other hand, the tendency of liquid pool radius variation according to time is similar between the results obtained from the model without the friction force and the experimental results.

Fatigue life prediction for radial truck tires using a global-local finite element method

  • Jeong, Kyoung Moon;Beom, Hyeon Gyu;Kim, Kee-Woon;Cho, Jin-Rae
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.35-47
    • /
    • 2011
  • A global-local finite element modeling technique is employed in this paper to predict the fatigue life of radial truck tires. This paper assumes that a flaw exists inside the tire, in the local model. The local model uses an FEM fracture analysis in conjunction with a global-local technique in ABAQUS. A 3D finite element local model calculates the energy release rate at the belt edge. Using the analysis of the local model, a study of the energy release rate is performed in the crack region and used to determine the crack growth rate analysis. The result considers how different driving conditions contribute to the detrimental effects of belt separation in truck tire failure. The calculation of the total mileage on four sizes of radial truck tires has performed on the belt edge separation. The effect of the change of belt width design on the fatigue lifetime of tire belt separation is discussed.

A Study on the Wigner Energy Release Characteristics of Irradiated Graphite of KRR-2 (연구로 2호기 중성자 조사 흑연의 Wigner 에너지 방출 특성 연구)

  • Jeong Gyeong-Hwan;Yun Sei-Hun;Lee Dong-Gyu;Jung Chong-Hun;Lee Keun-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.209-216
    • /
    • 2006
  • Characteristics of heat release process, while the Wigner energy was drawn off the graphite during DSC(Differential Scanning Calorimenter) measurement as an example of annealing process which is one of release methods of Wigner energy that is contained in the irradiated graphite, was studied. Linear temperature rise method in DSC operation was selected to estimate the total Wigner energy content and the heat release rate of each graphite samples, which were located in several positions in the thermal column in KRR-2 research reactor. As an annealing process in DSC operation Wigner energy of the irradiated graphite samples were totally released by heat supplying to the graphite from room temperature to $500^{\circ}C$, in DSC. Characteristics of Wigner energy release from the graphite sample was well correlated with the various activation energy model of the kinetic equation.

  • PDF

Numerical Study on the Devolatilization models of Pulverized Coal in DTF (DTF 내 미분탄 휘발화 모델에 관한 수치적 연구)

  • Kim, Jin-Nam;Kim, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.173-184
    • /
    • 2002
  • In order to evaluate the devolatilization models of pulverized coal, various devolatilization models are examined for the numerical analysis of Drop Tube Furnace.The results of analysis are compared with the experimental results. A numerical study was conducted to explore the sensitivities of the predictions to variation of the model parameters. It helps to elucidate the source of the discrepancies. Three different wall temperature conditions of the DTF, 1100, 1300 and $1500^{\circ}C$ were considered in this analysis. Two fuels are U.S.A. Alaska coal and Australia Drayton coal. The results of analysis with constant rate model, single kinetic rate model and two competing rate modes well presented fast volatile matter release in the early devolatilization. However, in the latter devolatilization they did not coincide with experimental results which presented tardy volatile matter release on account of pyrolysis of high molecular substance. On the other hand, the results of analysis with DAEM(Distribute Activation Energy Model) coincided with experiment al results in overall devolatilization.

  • PDF

Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone

  • Khaji, Zahra;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.817-828
    • /
    • 2022
  • In this study, considering dissipated energy in fracture process zone (FPZ), a novel criterion based on maximum strain energy release rate (SER) for orthotropic materials is presented. General case of in-plane loading for cracks along the fibers is assumed. According to the experimental observations, crack propagation is supposed along the fibers and the reinforcement isotropic solid (RIS) concept is employed as a superior model for orthotropic materials. SER in crack initiation and propagation phases is investigated. Elastic properties of FPZ are extracted as a function of undamaged matrix media and micro-crack density. This criterion meaningfully links between dissipated energy due to toughening mechanisms of FPZ and the macroscopic fracture by defining stress intensity factors of the damaged zone. These coefficients are used in equations of maximum SER criterion. The effect of crack initiation angle and the damaged zone is considered simultaneously in this criterion and mode II stress intensity factor is extracted in terms of stress intensity factors of damage zone and crack initiation angle. This criterion can evaluate the effects of FPZ on the fracture behavior of orthotropic material. Good agreement between extracted fracture limit curves (FLC's) and available experimental data proves the ability of the new proposed criterion.

Evaluation of Methyl Methacrylate-Butyl Methacrylate Copolymer Films and Kinetics of Nitrofurazone Release (메칠메타크릴레이트-부틸메타크릴레이트 공중합체 필름의 평가 및 니트로푸라존 방출의 속도론적 연구)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.17 no.3
    • /
    • pp.111-126
    • /
    • 1987
  • Methyl methacrylate-butyl methacrylate copolymer (MMBM)-dibutyl phthalate (DBP) films were investigated as a potential topical drug delivery system for the controlled release of nitrofurazone. The kinetic analysis of release data indicated that drug release followed a diffusion-controlled granular matrix model, where the quantity released per unit area is proportional to the square root of time. DBP of several hydrophobic plasticizers selected was found to give the highest release of nitrofurazone. However, hydrophilic plasticizers such as propylene glycol and polyethylene glycol 400 had no controlled release properties and acceptable film formation. The effects of changes in film composition, drug concentration, film thickness, pH of release medium, and temperature on the in vitro release of nitrofurazone were analyzed both theoretically and experimentally. The release rate constant (k') was found to be proportional to DBP content, pH, and the temperature of release medium, but independent of film thickness, and drug concentration in a range of 0.1-0.4% by weight. The linear relationship was found to exist between the log k' and DBP content. The release of nitrofurazone from MMBM-DBP (8:2) films was found to be an energy-linked process. Two energy terms were calculated ; the activation energy for matrix diffusion was 13.45 kcal/mole, and the heat of drug crystal solvation was 27.26-29.34 kcal/mole. Observation of scanning electron micrographs and microscopic photographs showed that the incorporation of DBP in films increased markedly the particle size of nitrofurazone dispersed in the film matrix, comparing with the fine dispersion of nitrofurazone in pure MMBM film alone.

  • PDF