• 제목/요약/키워드: Energy prediction

검색결과 2,366건 처리시간 0.023초

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

주광이용 조광제어시스템의 적용성 향상을 위한 조명 에너지 절감량 예측 프로세스 개발 및 적용사례 (The Process and Example on the Prediction of Lighting Energy Savings for Daylight Responsive Dimming Systems Application)

  • 홍성관;박병철;최안섭;이정호
    • 조명전기설비학회논문지
    • /
    • 제22권12호
    • /
    • pp.10-19
    • /
    • 2008
  • 광센서 조광제어시스템은 유용한 주광의 실내유입을 통하여 인공조명의 에너지를 절감하는 시스템이나, 쉐이팅시스템에 의한 주광유입의 차단으로 인하여 그 적용성은 미비하다. 따라서 광센서 조광제어시스템의 적용성 및 에너지 절감량 향상을 위해서는 자동롤러쉐이딩 시스템과의 통합은 필수적이다. 본 연구는 두 시스템을 통합한 주광이용 조광제어시스템의 적용성 향상을 위하여 시스템 적용 시 에너지 절감량을 예측할 수 있는 프로세스를 개발하고 이를 사례에 적용하였다. 개발된 프로세스는 주광이용 조광제어시스템의 초기투자비용 환수 및 시스템 적용을 위한 타당성 분석의 자료로 이용될 것이다.

실내 주광조도 분포 예측식의 제안 및 검증 (Proposal of the Prediction Equation for Interior Daylight Illuminance)

  • 박웅규;박태주;강규민;이상엽;송두삼
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.114-123
    • /
    • 2013
  • In these days, most of the office buildings are being required to save energy for maintenance. lighting system constitutes 20% to 30% of the total annual electrical energy consumption in office buildings. As an energy saving strategy for lighting system, dimming control system based on illuminance sensors came into use. But the system is accompanied with many illuminance sensors to control lighting and needs a lot of initial investment. In this study, the prediction equation for indoor daylighting illuminance distribution is proposed through the review for conventional research results and field measurements. The proposed equation was verified by the comparison between predicted results and field measurement results. The developed prediction equation for daylighting can be used to control the indoor illuminance level with the limited sensor when dimming control system is operated.

Prediction Model for Saturated Hydraulic Conductivity of Bentonite Buffer Materials for an Engineered-Barrier System in a High-Level Radioactive Waste Repository

  • Gi-Jun Lee;Seok Yoon;Bong-Ju Kim
    • 방사성폐기물학회지
    • /
    • 제21권2호
    • /
    • pp.225-234
    • /
    • 2023
  • In the design of HLW repositories, it is important to confirm the performance and safety of buffer materials at high temperatures. Most existing models for predicting hydraulic conductivity of bentonite buffer materials have been derived using the results of tests conducted below 100℃. However, they cannot be applied to temperatures above 100℃. This study suggests a prediction model for the hydraulic conductivity of bentonite buffer materials, valid at temperatures between 100℃ and 125℃, based on different test results and values reported in literature. Among several factors, dry density and temperature were the most relevant to hydraulic conductivity and were used as important independent variables for the prediction model. The effect of temperature, which positively correlates with hydraulic conductivity, was greater than that of dry density, which negatively correlates with hydraulic conductivity. Finally, to enhance the prediction accuracy, a new parameter reflecting the effect of dry density and temperature was proposed and included in the final prediction model. Compared to the existing model, the predicted result of the final suggested model was closer to the measured values.

LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석 (Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model)

  • 강민상;손은국;이진재;강승진
    • 풍력에너지저널
    • /
    • 제15권2호
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

Predicting the Digestible Energy of Rapeseed Meal from Its Chemical Composition in Growing-finishing Pigs

  • Zhang, T.;Liu, L.;Piao, X.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권3호
    • /
    • pp.375-381
    • /
    • 2012
  • Two experiments were conducted to establish a digestible energy (DE) content prediction model of rapeseed meal for growing-finishing pig based on rapeseed meal's chemical composition. In experiment 1, observed linear relationships between the determined DE content of 22 rapeseed meal calibration samples and proximate nutrients, gross energy (GE) and neutral detergent fiber (NDF) were used to develop the DE prediction model. In experiment 2, 4 samples of rapeseed meal selected at random from the primary rapeseed growing regions of China were used for testing the accuracy of DE prediction models. The results indicated that the DE was negatively correlated with NDF (r = -0.86) and acid detergent fiber (ADF) (r = -0.73) contents, and moderately correlated with gross energy (GE; r = 0.56) content in rapeseed meal calibration samples. In contrast, no significant correlations were found for crude protein, ether extract, crude fiber and ash contents. According to the regression analysis, NDF or both NDF and GE were found to be useful for the DE prediction models. Two prediction models: DE = 16.775-0.147${\times}$NDF ($R^2$ = 0.73) and DE = 11.848-0.131${\times}$NDF+0.231${\times}$GE ($R^2$ = 0.76) were obtained. The maximum absolute difference between the in vivo DE determinations and the predicted DE values was 0.62 MJ/kg and the relative difference was 5.21%. Therefore, it was concluded that, for growing-finishing pigs, these two prediction models could be used to predict the DE content of rapeseed meal with acceptable accuracy.

Fundamental Approach to Capacity Prediction of Si-Alloys as Anode Material for Li-ion Batteries

  • Kim, Jong Su;Umirov, Nurzhan;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권1호
    • /
    • pp.51-59
    • /
    • 2018
  • Various Si-Fe-Al ternary alloys were prepared with the same amount of Si by the melt spinning technique. The feasibility of the capacity prediction approach based on the estimation of the active amount of Si using the phase diagram was practically examined and reported. These predictions were verified by the electrochemical test of fabricated coin cells and other characterization methods. The capacity prediction approach using the phase diagram might be a fundamental and efficient method to accelerate the practical application of Si-based alloys as the anode material for Li-ion batteries. The details on the prediction procedure were discussed.

선박용 연료전지 성능 예측 방법에 관한 고찰 (A Review on Performance Prediction of Marine Fuel Cells )

  • 박은주;이진광
    • 한국수소및신에너지학회논문집
    • /
    • 제35권4호
    • /
    • pp.437-450
    • /
    • 2024
  • Sustainable shipping depends on eco-friendly energy solutions. This paper reviews methods for predicting marine fuel cell performance, including empirical approaches, physical modeling, data-driven techniques, and hybrid methods. Accurate prediction models tailored to the marine environment's unique conditions are crucial for operational efficiency. By evaluating the strengths and weaknesses of each method, this study provides a comprehensive analysis of effective strategies for forecasting polymer electrolyte membrane fuel cell and solid oxide fuel cell performance in marine applications. These insights contribute to the advancement of eco-friendly shipping technologies and enhance fuel cell performance in challenging marine environments.

특수일 분리와 예측요소 확장을 이용한 전력수요 예측 딥 러닝 모델 (Deep Learning Model for Electric Power Demand Prediction Using Special Day Separation and Prediction Elements Extention)

  • 박준호;신동하;김창복
    • 한국항행학회논문지
    • /
    • 제21권4호
    • /
    • pp.365-370
    • /
    • 2017
  • 본 연구는 전력수요 패턴이 다른 평일과 특수일 데이터가 가지는 상관관계를 분석하여, 별도의 데이터 셋을 구축하고, 각 데이터 셋에 적합한 딥 러닝 네트워크를 이용하여, 전력수요예측 오차를 감소하는 방안을 제시하였다. 또한, 기본적인 전력수요 예측요소인 기상요소에 환경요소, 구분요소 등 다양한 예측요소를 추가하여 예측율을 향상하는 방안을 제시하였다. 전체데이터는 시계열 데이터 학습에 적합한 LSTM을 이용하여 전력수요예측을 하였으며, 특수일 데이터는 DNN을 이용하여 전력수요예측을 하였다. 실험결과 기상요소 이외의 예측요소 추가를 통해 예측율이 향상되었다. 전체 데이터 셋의 평균 RMSE는 LSTM이 0.2597이며, DNN이 0.5474로 LSTM이 우수한 예측율을 보였다. 특수일 데이터 셋의 평균 RMSE는 0.2201로 DNN이 LSTM보다 우수한 예측율을 보였다. 또한, 전체 데이터 셋의 LSTM의 MAPE는 2.74 %이며, 특수 일의 MAPE는 3.07 %를 나타냈다.

Prediction model for the hydration properties of concrete

  • Chu, Inyeop;Amin, Muhammad Nasir;Kim, Jin-Keun
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.377-392
    • /
    • 2013
  • This paper investigates prediction models estimating the hydration properties of concrete, such as the compressive strength, the splitting tensile strength, the elastic modulus,and the autogenous shrinkage. A prediction model is suggested on the basis of an equation that is formulated to predict the compressive strength. Based on the assumption that the apparent activation energy is a characteristic property of concrete, a prediction model for the compressive strength is applied to hydration-related properties. The hydration properties predicted by the model are compared with experimental results, and it is concluded that the prediction model properly estimates the splitting tensile strength, elastic modulus, and autogenous shrinkage as well as the compressive strength of concrete.