• Title/Summary/Keyword: Energy platforms

Search Result 121, Processing Time 0.024 seconds

A Study on Energy Platform Using Data in the US: Based on Opening Platform Model

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.41-50
    • /
    • 2021
  • The purpose of this study is to analyze various energy platforms using data in the US and to suggest directions and implications. Some of the leading energy platforms are selected and analyzed based on the opening platform model. We focus on the case analysis of the US utility companies. In case of the horizontal open platform, Green Button sponsor's 'Connect My Data (CMD)' driven by the government invites the utility companies to jointly develop the sponsor's data solution. In case of the vertical open platform, the certification program 'Share My Data (SMD)' allows backward compatibility, because the technical improvement is minimal. The utility companies benchmark Amazon's three-sided market mediation and prefer platform and category exclusivity. For the former, they have data analytics companies like Enervee, Opower and for the latter, they have electronics manufactures and energy service providers (ESPs) like Distributed Energy Resources (DERs). Based on this US case study, we suggest the energy platforms to open their platform for renewable energy supply, energy conservation, high-efficiency products, and residential DER dissemination. To successfully implement the government's energy transition policy, the US platforms should be benchmarked as a business model. Especially, it is needed for them to coordinate a platform ecosystem. To ensure trust in the products and services offered on the marketplace platform, platform's certification program is helpful.

Damage detection in jacket type offshore platforms using modal strain energy

  • Asgarian, B.;Amiri, M.;Ghafooripour, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.325-337
    • /
    • 2009
  • Structural damage detection, damage localization and severity estimation of jacket platforms, based on calculating modal strain energy is presented in this paper. In the structure, damage often causes a loss of stiffness in some elements, so modal parameters; mode shapes and natural frequencies, in the damaged structure are different from the undamaged state. Geometrical location of damage is detected by computing modal strain energy change ratio (MSECR) for each structural element, which elements with higher MSECR are suspected to be damaged. For each suspected damaged element, by computing cross-modal strain energy (CMSE), damage severity as the stiffness reduction factor -that represented the ratios between the element stiffness changes to the undamaged element stiffness- is estimated. Numerical studies are demonstrated for a three dimensional, single bay, four stories frame of the existing jacket platform, based on the synthetic data that generated from finite element model. It is observed that this method can be used for damage detection of this kind of structures.

Preliminary hydrodynamic assessments of a new hybrid wind wave energy conversion concept

  • Allan C de Oliveira
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2023
  • Decarbonization and energy transition can be considered as a main concern even for the oil industry. One of the initiatives to reduce emissions under studies considers the use of renewable energy as a complimentary supply of electric energy of the production platforms. Wind energy has a higher TRL (Technology Readiness Level) than other types of energy converters and has been considered in these studies. However, other types of renewable energy have potential to be used and hybrid concepts considering wind platforms can help to push the technological development of other types of energy converters and improve their efficiency. In this article, a preliminary hydrodynamic assessment of a new concept of hybrid wind and wave energy conversion platform was performed, in order to evaluate the potential of wave power extraction. A multiple OWCs (Oscillating Water Column) WEC (Wave Energy Converter) design was adopted for the analysis and some simplifications were adopted to permit using a frequency domain approach to evaluate the mean wave power estimation for the location. Other strategies were used in the OWC design to create resonance in the sea energy range to try to maximize the potential power to be extracted, with good results.

Hardware Platforms for Flash Memory/NVRAM Software Development

  • Nam, Eyee-Hyun;Choi, Ki-Seok;Choi, Jin-Yong;Min, Hang-Jun;Min, Sang-Lyul
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.3
    • /
    • pp.181-194
    • /
    • 2009
  • Flash memory is increasingly being used in a wide range of storage applications because of its low power consumption, low access latency, small form factor, and high shock resistance. However, the current platforms for flash memory software development do not meet the ever-increasing requirements of flash memory applications. This paper presents three different hardware platforms for flash memory/NVRAM (non-volatile RAM) software development that overcome the limitations of the current platforms. The three platforms target different types of host system and provide various features that facilitate the development and verification of flash memory/NVRAM software. In this paper, we also demonstrate the usefulness of the three platforms by implementing three different types of storage system (one for each platform) based on them.

Fatigue Design of Mooring Lines of Floating Type Combined Renewable Energy Platforms

  • Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.171-179
    • /
    • 2011
  • This paper presents the concept design procedure of a floating-type combined renewable energy platform based on hydrodynamic analyses and is focused on the fatigue design of taut-type mooring lines of the platform. Two types of combined renewable energy platforms are considered: a combination of wind turbine, wave turbine and photovoltaic energy plant and a combination of wind turbine, current turbine and photovoltaic energy plant. The basic configurations are conceptually determined from the understanding of floating offshore plants, while the main dimensions have been determined based on a hydrostatic calculation. Fully coupled hydrodynamic analyses have been carried out to identify the motion characteristics of the floating body and the tension histories of the mooring lines. The tension history is used for the fatigue life prediction based on the rain-flow cycle counting method. For the fatigue life prediction, tension life curves from API and the Palmgren-Miner rule are employed.

A review of the characteristics related to the platform design, transportation and installation of floating offshore wind turbine systems with a tension-leg platform (인장각형 부유식 해상풍력발전시스템의 하부 플랫폼 설계 및 운송·설치 관련 특성 고찰)

  • Hyeonjeong Ahn;Yoon-Jin Ha;Ji-Yong Park;Kyong-Hwan Kim
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.29-42
    • /
    • 2023
  • In this study, research and empirical cases of floating offshore wind turbine systems with a tension-leg platform are investigated, and hydrodynamic and structural characteristics according to platform shapes and characteristics during transportation and installation are confirmed. Most platforms are composed of pontoons or corner columns, and these are mainly located below the waterline to minimize the impact of breaking waves and supplement the lack of buoyancy of the center column. These pontoons and corner columns are designed with a simple shape to reduce manufacturing and assembly costs, and some platforms additionally have reinforcements such as braces to improve structural strength. Most of the systems are assembled in the yard and then moved by tugboat and installed, and some platforms have been developed with a dedicated barge for simultaneous assembly, transportation and installation. In this study, we intend to secure the basic data necessary for the design, transportation, and installation procedures of floating offshore wind turbine systems with a tension-leg platform.

Energy-aware EDZL Real-Time Scheduling on Multicore Platforms (멀티코어 플랫폼에서 에너지 효율적 EDZL 실시간 스케줄링)

  • Han, Sangchul
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.296-303
    • /
    • 2016
  • Mobile real-time systems with limited system resources and a limited power source need to fully utilize the system resources when the workload is heavy and reduce energy consumption when the workload is light. EDZL (Earliest Deadline until Zero Laxity), a multiprocessor real-time scheduling algorithm, can provide high system utilization, but little work has been done aimed at reducing its energy consumption. This paper tackles the problem of DVFS (Dynamic Voltage/Frequency Scaling) in EDZL scheduling. It proposes a technique to compute a uniform speed on full-chip DVFS platforms and individual speeds of tasks on per-core DVFS platforms. This technique, which is based on the EDZL schedulability test, is a simple but effective one for determining the speeds of tasks offline. We also show through simulation that the proposed technique is useful in reducing energy consumption.

Numerical simulations of a horizontal axis water turbine designed for underwater mooring platforms

  • Tian, Wenlong;Song, Baowei;VanZwieten, James H.;Pyakurel, Parakram;Li, Yanjun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 2016
  • In order to extend the operational life of Underwater Moored Platforms (UMPs), a horizontal axis water turbine is designed to supply energy for the UMPs. The turbine, equipped with controllable blades, can be opened to generate power and charge the UMPs in moored state. Three-dimensional Computational Fluid Dynamics (CFD) simulations are performed to study the characteristics of power, thrust and the wake of the turbine. Particularly, the effect of the installation position of the turbine is considered. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS) equations and the shear stress transport ${\kappa}-{\omega}$ turbulent model is utilized. The numerical method is validated using existing experimental data. The simulation results show that this turbine has a maximum power coefficient of 0.327 when the turbine is installed near the tail of the UMP. The flow structure near the blade and in the wake are also discussed.

Cutting-edge Piezo/Triboelectric-based Wearable Physical Sensor Platforms

  • Park, Jiwon;Shin, Joonchul;Hur, Sunghoon;Kang, Chong-Yun;Cho, Kyung-Hoon;Song, Hyun-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.301-306
    • /
    • 2022
  • With the recent widespread implementation of Internet of Things (IoT) technology driven by Industry 4.0, self-powered sensors for wearable and implantable systems are increasingly gaining attention. Piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), which convert biomechanical energy into electrical energy, can be considered as efficient self-powered sensor platforms. These are energy harvesters that are used as low-power energy sources. However, they can also be used as sensors when an output signal is used to sense any mechanical stimuli. For sensors, collecting high-quality data is important. However, the accuracy of sensing for practical applications is equally important. This paper provides a brief review of the performance advanced by the materials and structures of the latest PENG/TENG-based wearable sensors and intelligent applications applied using artificial intelligence (AI)

Unsteady Aerodynamic Characteristics of Floating Offshore Wind Turbine According to Wave Height and Wave Angular Frequency (해상용 부유식 풍력 발전기의 파고와 파주기에 따른 비정상 공력 특성 연구)

  • Jeon, Minu;Kim, Hogeon;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.184.1-184.1
    • /
    • 2010
  • Floating wind turbines have been suggested as a feasible solution for going further offshore into deeper waters. However, floating platforms cause additional unsteady motions induced by wind and wave conditions, so that it is difficult to predict annual energy output of wind turbines by using conventional power prediction method. That is because sectional inflow condition on a rotor plane is varied by unsteady motion of floating platforms. Therefore, aerodynamic simulation using Vortex Lattice Method(VLM) were used to investigate the influence of motion on the aerodynamic performance of a floating offshore wind turbine. Simulation with individual motion of offshore platform were compared to the case of onshore platform and carried out according to the wave height and the wave angular frequency.

  • PDF