• Title/Summary/Keyword: Energy piles

Search Result 78, Processing Time 0.024 seconds

Evaluation on Thermal Performance Along with Constructability and Economic Feasibility of Large-diameter Cast-in-place Energy Pile (대구경 현장타설 에너지파일의 열교환 성능과 시공성 및 경제성 분석)

  • Park, Sangwoo;Sung, Chihun;Lee, Dongseop;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.5-21
    • /
    • 2015
  • An energy pile is a novel type of ground heat exchangers (GHEX's) which sets up heat exchange pipes inside a pile foundation, and allows to circulate a working fluid through the pipe for exchanging thermal energy with the surrounding ground stratum. Using existing foundation structure, the energy pile can function not only as a structural foundation but also as a GHEX. In this paper, six full-scale energy piles were constructed in a test bed with various configurations of the heat exchange pipe inside large-diameter cast-in-place piles, that is, three parallel U-type heat exchangers (5, 8 and 10 pairs), two coil type heat exchangers (with a 500 mm and 200 mm pitch), and one S-type heat exchanger. During constructing the energy piles, the constructability of each energy pile was evaluated with consideration of the installation time, the number of workers and any difficulty for installing. In order to evaluate the thermal performance of energy piles, the thermal performance tests were carried out by applying intermittent (8 hours operating-16 hours pause) artificial cooling operation to simulate a cooling load for commercial buildings. Through the thermal performance tests, the heat exchange rates of the six energy piles were evaluated in terms of the heat exchange amount normalized with the length of energy pile and/or the length of heat exchange pipe. Finally, the economic feasibility of energy pile was evaluated according to the various types of heat exchange pipe by calculating demanded expenses per 1 W/m based on the thermal performance test results along with the market value of heat exchange pipes and labor cost.

Prediction of End Bearing Capacity for Pre-Bored Steel Pipe Piles Using Instrumented Spt Rods (SPT 에너지효율 측정 롯드를 이용한 매입말뚝의 선단지지력 예측)

  • Nam, Moon S.;Park, Young-Ho;Park, Yong-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.105-111
    • /
    • 2013
  • The standard penetration test (SPT) has been widely used because of its usability, economy, and many correlations with soil properties among other factors. In SPT, hammer energy is an important factor to evaluate and calibrate N values. To measure hammer energy, an instrumented SPT rod was developed considering that stress waves transferring on rods during SPT driving are the same as stress waves transferring on piles due to pile driving. Using this idea, an instrumented SPT rod with a pile driving analyzer was applied as a pile capacity prediction tool in this study. In order to evaluate this method, SPT and dynamic cone tests with the instrumented SPT rod were conducted and also 2 pile load tests were performed on pre-bored steel pipe piles at the same test site. End bearings were predicted by CAPWAP analysis on force and velocity waves from dynamic cone penetration tests and SPT. Comparing these predicted end bearings with static pile load tests, a new prediction method of the end bearing capacity using the instrumented SPT rod was proposed.

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF

Effect of Group Spacing of Energy Piles on Thermal Analysis (말뚝 간격에 따른 에너지 파일의 열적 거동분석)

  • Min, Hye-Sun;Yun, Tae-Sup;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.39-50
    • /
    • 2011
  • This study was conducted to analyze the thermal behavior of a PHC energy pi1e system in saturated soil conditions, various seasonal and flow-speed conditions during 100 hours of operation through numerical analysis. The examination was a1so conducted with a single pile as well as with group pils. For the operation of 100 hours, the average heat exchange rate appeared 55 W/m, 47 W/m during winter and summer respectively. An increase in flow-speed was associated with a rise in the heat exchange rate. And thermal behavior analysis results during winter season show that thermal efficiency has increased when there are more free thermal planes. For the operation in group pile as 3D and 5D pile spacing (D: pile diameter), average heat exchange rate increased as pile spacing grows. Compared with the heat exchange rate of single pile, thermal exchange efficiency of group pile decreased by 89% (for 3D spacing) and 93% (for 5D spacing).

Feasibility Appraisal and Proposal of a Pile Driving Formula for Domestic Pre-bored Pile Management (국내 매입 말뚝 관리를 위한 항타공식 활용 가능성 평가 및 제안에 관한 연구)

  • Kim, Gunwoong;Seo, Seunghwan;Kim, Juhyong;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.71-84
    • /
    • 2023
  • In accordance with Korean structural foundation design standards, dynamic or static load tests are mandated for 1 to 3% of total piles. The construction quality of the remaining 97% to 99% of piles is determined through penetration measurements. This study aims to enhance the quality control of the majority of piles by adopting a pile driving formula that considers both penetration and hammer energy. The current challenge lies in adapting existing overseas driving formulas to the domestic site conditions, characterized by shallow weathered or soft rocks, and the prevalent use of pre-bored piles. To address this, the Modified Gates formula was refined using domestic dynamic load data, thereby improving its applicability to pile management. Despite employing fewer variables, the proposed formula demonstrates a comparable accuracy to dynamic loading tests in predicting the bearing capacity of pre-bored piles. Consequently, this formula holds promise for practical use in future pile quality management.

Analytical Study on the Appropriateness of Design Formula and Possibility of Improving Bearing Capacity of Bored Pile (매입말뚝의 설계식 적정성 및 지지력 상향 가능성 분석 연구)

  • Park, Jong-Bae;Lee, Bum-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • To improve the pile design efficiency(design bearing capacity/the strength of materials) from 70 percent(160tonf) to 80 percent(190tonf), this paper analysed the existing pile loading test data and performed the precise dynamic loading test and Bi-directional loading test for the first time in Korea. Analysis result of the existing dynamic loading test data by Davisson method showed that bearing capacity of piles penetrated at weathered rock stratum(N=50/15) exceeded 190tonf. But the analysis result by CAPWAP method showed that piles less than the target bearing capacity were 40% due to the lack of impact energy. To get the target bearing capacity from the dynamic loading test, using the hammer over 6tonf to trigger the enough impact energy is necessary. Allowable bearing capacty of Bi-directional static loading test by Davisson method was 260.0~335tonf(ave. 285.3tonf) and exceeded overwhelmingly the target capacity. And this exceeded the bearing capacity of precise dynamic loading test(ave. 202.3tonf) performed on the same piles over 40%. The difference between the capacity of Bi-directional loading test and dynamic loading test was caused by the insufficient impact energy during dynamic loading test and increase by interlocking effect by near piles during Bi-directional static loading test.

Design Method for Cast-in-place Energy Pile Considering Equivalent Heat Exchange Rate (등가열교환율을 적용한 현장타설 에너지파일 설계법)

  • Min, Sunhong;Park, Sangwoo;Jung, Kyoungsik;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1049-1061
    • /
    • 2013
  • In this paper, a relative heat exchange rate is numerically compared for cast-in-place concrete energy piles with different heat exchange pipe configurations, and a new design method for energy piles is proposed. An equivalent heat exchange rate was estimated for the W-type (one series loop), multiple U-type (four parallel loops), and coil-type heat exchanger installed in the same large-diameter drilled shaft. In order to simulate a cooling operation in summer by a CFD analysis, the LWT (leaving water temperature) into a energy pile was fixed at $35^{\circ}C$ and then the EWT (entering water temperature) into a heat pump was monitored. In case of continuously applying the artificial maximum cooling load for 100 hours, all of the three types of heat exchangers show the marginally similar heat exchange rate. However, in case of intermittently applying the cooling load with a cycle of 8 hours operation-16 hours off for 7 consecutive days, the coil type heat exchanger exhibits a heat exchange rate only 86 % of the multiple U-type due to measurable thermal interference between pipe loops in the energy pile. On the other hand, the W-type possesses the similar heat exchange rate to the multiple U-type. The equivalent heat exchange rates for each configuration of heat exchangers obtained from the CFD analysis were adopted for implementing the commercial design program (PILESIM2). Finally, a design method for cast-in-place concrete energy piles is proposed along with a design chart in consideration of typical design factors.

A study on platform-based preliminary design guidelines associated with the behaviour of piles to adjacent tunnelling (터널근접시공에 의한 말뚝의 거동을 고려한 플랫폼 기반의 예비 설계 가이드라인에 대한 연구)

  • Jeon, Young-Jin;Lee, Gyu-Seol;Lee, Jae-Cheol;Batbuyan, Chinzorig;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.129-151
    • /
    • 2022
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of piles when the adjacent tunnelling passes underneath grouped piles with a reinforced pile cap. In the current study, the numerical analysis studied the computed results regarding the ground reinforcement condition between the tunnel and pile foundation. In addition, several key issues, such as the pile settlements, the axial pile forces, the shear stresses and the relative displacements have been thoroughly analysed, and the IoT platform based preliminary design guidelines were also presented. The pile head settlements of the nearest pile from the tunnel without the ground reinforcement increased by about 70% compared to the farthest pile from the tunnel with the maximum level of reinforcement. The quality management factor data of the piles were provided as API (Application Programming Interface) of various forms by the collection and refinement. Hence it has been shown that it would be important to provide the appropriate API by defining the each of data flow process when the data were created. The behaviour of the grouped piles with the pile cap, depending on the amount of ground reinforcement, has been extensively analysed, and the IoT platform regarding the quality management of piles has been suggested.

Analysis of Bearing Capacity Improvement Effect of Inner Cone Penetration Equiped Open-Ended Steel Pipe Pile (개단 강관말뚝 내부 콘항타에 의한 지지력 증대효과 분석)

  • Lee, Junho;Ji, Su-Bin;Lee, Kicheol;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2017
  • This study analyzes behavior of bearing capacity of open-ended pipe pile from laboratory experiment results. Unlike the conventional pipe piles, cone penetration is implemented into the inside of the pipe pile. During the cone penetration, cone driving energy helps densification of plugged soils and soils below the pile end. Sand pluviator was used to obtain homogeneous soil layers. Two kinds of piles with different pile outer surface roughness were prepared, and two different drop heights of pile driving were applied. Eight experimental cases varying pile outer surface roughness, pile driving energy for conventional and cone penetration implemented piles were conducted. From the experiments, ultimate load of the pile increased approximately by 70% for increased pile driving height, and it increased by 21% for rougher surface pile. When cone penetration is implemented, the ultimate load increased by 40% in average.

Thermal Influential Factors of Energy Pile (에너지 파일의 열적거동 인자분석)

  • Jeong, Sang-Seom;Song, Jin-Young;Min, Hye-Sun;Lee, Sung-June
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.231-239
    • /
    • 2010
  • This paper presents the thermal conduction analysis (using ABAQUS ver 6.10 and FLUENT ver 6.3.26) of geothermal energy for PHC, steel and copper energy piles by considering subsurface environment, thermal efficiency of grouting materials, and fluid velocity of circulating fluid. Results show that higher thermal efficiency for copper pile is observed followed by steel and PHC piles depending on the grouting materials and subsurface condition. The fluid velocity of 0.6m/s presents most efficient outflow temperature (275.4K) and heat exchange rate (103.1W/m) for the case of PHC pile during 8 hours operation. Analysis of operation schedule concludes that 16 hours of stand-by allows charging geothermal energy following 8 hours operation in winter season is most appropriate with 0.1K of temperature difference from the steady-state condition.