• Title/Summary/Keyword: Energy pile

Search Result 222, Processing Time 0.025 seconds

Fabrication of AC4A/SiCw composite by squeeze casting (III) - Mechanical characteristics - (용탕단조법에 의한 AC4A/SiCw 복합재료 제조에 관한 연구(III) - 기계적 특성 -)

  • Moon, Kyung-Cheol;Lee, Jun-Hee;Yoon, Eui-Pak
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.160-168
    • /
    • 1994
  • This was studied about mechanical characteristic of AC4A/SiCw 10-30% reinforced composites. Tensile strength of pressed base metal(base metal) with SiCw preform was higher than without pressed base metal(AC4A). If SiCw whisker volume fraction was increased, tensile strength at room temperature was increased. And tensile strength of SiCw 30% was about $35kg/mm^2$. Tensile strength of SiCw 30 % $400^{\circ}C$ at same time aging was the most excellence, about $40kg/mm^2$. The fracture energy value of composite material at three point bending test was higher than AC4A. Dislocation at matrix of composite material was evenly distributed. But dislocation around whisker of composite material was more existed than matrix. The reasom was thought of pile-up around whisker.

  • PDF

Analysis on the post-irradiation examination of the HANARO miniplate-1 irradiation test for kijang research reactor

  • Park, Jong Man;Tahk, Young Wook;Jeong, Yong Jin;Lee, Kyu Hong;Kim, Heemoon;Jung, Yang Hong;Yoo, Boung-Ok;Jin, Young Gwan;Seo, Chul Gyo;Yang, Seong Woo;Kim, Hyun Jung;Yim, Jeong Sik;Kim, Yeon Soo;Ye, Bei;Hofman, Gerard L.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1044-1062
    • /
    • 2017
  • The construction project of the Kijang research reactor (KJRR), which is the second research reactor in Korea, has been launched. The KJRR was designed to use, for the first time, U-Mo fuel. Plate-type U-7 wt.% Mo/Al-5 wt.% Si, referred to as U-7Mo/Ale5Si, dispersion fuel with a uranium loading of $8.0gU/cm^3$, was selected to achieve higher fuel efficiency and performance than are possible when using $U_3Si_2/Al$ dispersion fuel. To qualify the U-Mo fuel in terms of plate geometry, the first miniplates [HANARO Miniplate (HAMP-1)], containing U-7Mo/Al-5Si dispersion fuel ($8gU/cm^3$), were fabricated at the Korea Atomic Energy Research Institute and recently irradiated at HANARO. The PIE (Post-irradiation Examination) results of the HAMP-1 irradiation test were analyzed in depth in order to verify the safe in-pile performance of the U-7Mo/Al-5Si dispersion fuel under the KJRR irradiation conditions. Nondestructive analyses included visual inspection, gamma spectrometric mapping, and two-dimensional measurements of the plate thickness and oxide thickness. Destructive PIE work was also carried out, focusing on characterization of the microstructural behavior using optical microscopy and scanning electron microscopy. Electron probe microanalysis was also used to measure the elemental concentrations in the interaction layer formed between the U-Mo kernels and the matrix. A blistering threshold test and a bending test were performed on the irradiated HAMP-1 miniplates that were saved from the destructive tests. Swelling evaluation of the U-Mo fuel was also conducted using two methods: plate thickness measurement and meat thickness measurement.

The Effect of Construction Methods on Geothermal Exchange Rates of Cast-in-place Energy Piles (현장타설말뚝형 에너지 파일의 시공형태별 지중 열교환량에 관한 연구)

  • Park, Yong-Boo;Nam, Yu-Jin;Sim, Young-Jong;Sohn, Jeong-Rak
    • Land and Housing Review
    • /
    • v.3 no.2
    • /
    • pp.169-175
    • /
    • 2012
  • In recent, there are many studies associated with energy piles to save initial construction cost for ground source heat pump system. In this study, to evaluate geothermal exchange rates two types (a connection type and a slinky type) of cast-in-place energy piles (PRD, 4.5m in depth, 1,200 mm in diameter) were constructed for the tests and their efficiencies were compared with numerical analysis results. As a result, starting with operation, geothermal exchange rate gradually decreases due to exchange of lower ground temperature. In the case of connection type, temperature difference is $0.37^{\circ}C$ in heating mode and $0.34^{\circ}C$, in cooling mode, respectively. In addition, in case of a connection type, geothermal exchange rate in heating mode is 2,314W/m and in cooling mode, 252.2W/m whose value is 9% higher than in heating mode. In the case of slinky type, the average geothermal exchange rate in heating mode is 168.0W/m, which is about 27% lower than that of connection type.

Study on the effect of long-term high temperature irradiation on TRISO fuel

  • Shaimerdenov, Asset;Gizatulin, Shamil;Dyussambayev, Daulet;Askerbekov, Saulet;Ueta, Shohei;Aihara, Jun;Shibata, Taiju;Sakaba, Nariaki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2792-2800
    • /
    • 2022
  • In the core of the WWR-K reactor, a long-term irradiation of tristructural isotopic (TRISO)-coated fuel particles (CFPs) with a UO2 kernel was carried out under high-temperature gas-cooled reactor (HTGR)-like operating conditions. The temperature of this TRISO fuel during irradiation varied in the range of 950-1100 ℃. A fission per initial metal atom (FIMA) of uranium burnup of 9.9% was reached. The release of gaseous fission products was measured in-pile. The release-to-birth ratio (R/B) for the fission product isotopes was calculated. Aspects of fuel safety while achieving deep fuel burnup are important and relevant, including maintaining the integrity of the fuel coatings. The main mechanisms of fuel failure are kernel migration, silicon carbide corrosion by palladium, and gas pressure increase inside the CFP. The formation of gaseous fission products and carbon monoxide leads to an increase in the internal pressure in the CFP, which is a dominant failure mechanism of the coatings under this level of burnup. Irradiated fuel compacts were subjected to electric dissociation to isolate the CFPs from the fuel compacts. In addition, nondestructive methods, such as X-ray radiography and gamma spectrometry, were used. The predicted R/B ratio was evaluated using the fission gas release model developed in the high-temperature test reactor (HTTR) project. In the model, both the through-coatings of failed CFPs and as-fabricated uranium contamination were assumed to be sources of the fission gas. The obtained R/B ratio for gaseous fission products allows the finalization and validation of the model for the release of fission products from the CFPs and fuel compacts. The success of the integrity of TRISO fuel irradiated at approximately 9.9% FIMA was demonstrated. A low fuel failure fraction and R/B ratios indicated good performance and reliability of the studied TRISO fuel.

An Exploratory Study on the Structure of Fabric of Increasing Triboelectric Energy Harvesting by Applying Three-dimensional Embroidery Technique (입체 자수 기법을 적용한 마찰 에너지 수확 증대형 직물 구조의 탐색)

  • Yang, Jin-Hee;Cho, Hyun-Seung;Kim, Min-Ook;Kim, Jong-Baeg;Kim, Shin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.141-150
    • /
    • 2018
  • The purpose of this study is to investigate three-dimensional embroidery techniques for creating conductive fabric materials. Such techniques can increase the efficiency of energy harvesting by increasing the fabric's area during rubbing and brushing. We also investigate the fabric structure of the triboelectric energy harvesting type. Two experiments were conducted for this purpose. In Experiment I, the three-dimensional embroidery technique(satin technique, file technique) and the conductive fabric material(copper-based MPF, nickel-based MPF) were selected as the main variables affecting the efficiency of triboelectric energy harvesting from the human body. Four samples were fabricated according to a combination of two variables. In Experiment II, the harvesters fabricated by the three-dimensional embroidery method showing the highest efficiency were subjected to brushing processes and the voltages generated after processing were analyzed. As a result, in both conductive fabric materials, the pile embroidery fabric structure showed a higher efficiency than the satin structure. These results show the triboelectric energy harvesting principle, which is proportional to the charge density and the generated voltage. It can be seen that the structure of pile embroidery fabric with a large friction area is advantageous for increasing efficiency compared to satin embroidery-fabric structure with a relatively small friction area. Moreover, the energy harvesting efficiency after brushing was higher than that before processing due to the increased friction area, and it was found that the brushing method is advantageous for increasing the triboelectric-energy harvest.

Standard Penetration Test Performance in Sandy Deposits (모래지반에서 표준관입시험에 따른 관입거동)

  • Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.39-48
    • /
    • 2013
  • This paper presents an equation to depict the penetration behavior during the standard penetration test (SPT) in sandy deposits. An energy balance approach is considered and the driving mechanism of the SPT sampler is conceptually modeled as that of a miniature open-ended steel pipe pile into sands. The equation consists of three sets of input parameters including hyperbolic parameters (m and ${\lambda}$) which are difficult to determine. An iterative technique is thus applied to determine the optimized values of m and ${\lambda}$ using three measured values from a routine SPT data. It is verified from a well-documented record that the simulated penetration curves are in good agreement with the measured ones. At a given depth, the increase in m results in the decrease in ${\lambda}$ and the increase in the curvature of the penetration curve as well as the simulated N-value. Generally, the predicted penetration curve becomes nearly straight for the portion of exceeding the seating drive zone, which is more pronounced as soil density increases. Thus, the simulation method can be applied to extrapolating a prematurely completed test data, i.e., to determining the N value equivalent to a 30 cm penetration. A simple linear equation is considered for obtaining similar results.

Effects of Expanding Methods on Residual Stress of Expansion Transition Area in Steam Generator Tube of Nuclear Power Plants (원전 증기발생기 전열관 확관법이 확관부위 잔류응력에 미치는 영향)

  • Kim, Young Kyu;Song, Myung Ho
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.362-372
    • /
    • 2012
  • The steam generator tubes of nuclear power plants are pressure boundaries, and if tubes are leaked, the coolant with the radioactive materials was flowed out from the primary system to the secondary system and polluted the plant and the air. Recently most crack defects of tubes are stress corrosion cracks and these defects are located in expansion transition area, sludge pile-up region, and U-bend area. The most effective one of crack initiation factors in expansion transition area and U-bend area is the residual stress. According to the experiences of Korea standard nuclear plants(Optimized Power Reactor-1000), they had the stress corrosion cracks at the tube expansion transition area in early operating stage and especially lots of circumferential cracks were occurred. Therefore in this study, the distributions and conditions of residual stresses by tube expansion methods were compared and the dominant reason of a specific direction was examined.

Effect of Surfactant-Coated Charcoal Amendment on the Composting Process and Nutrient Retention

  • Pinwisat, Phetrada;Phoolphundh, Sivawan;Buddhawong, Sasidhorn;Vinitnantharat, Soydoa
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.37-40
    • /
    • 2014
  • This research investigates the quality changes during composting of bagasse and pig manure amended with 30% of surfactant-coated charcoal (SC). Two treatments, 30% uncoated charcoal (UC) amendment and no charcoal (NC) amendment, were done as control. Charcoal was coated with 0.37 mM tetradecyltrimethylammonium bromide (TDMA), a cationic surfactant, at the dosage of 10 g/L. At the end of the composting period, the carbon to nitrogen (C/N) ratio of SC amendment was 9.7; whereas, the C/N ratios of UC and NC amendment were 12.6 and 21.4, respectively. Plant nutrients contents of the compost produced from SC amendment were 20.7 mg $NH_4{^+}-N/g$, 42.8 mg $NO_3{^-}-N/g$, and 41.7 mg P/g. High nitrate and phosphate concentrations in SC amendment were due to the adsorption of these anions on the positive charge of TDMA. Desorption of plant nutrients retained in the compost pellets was also investigated. It was predicted that nitrate was fully desorbed from a pellet at 23 days for SC amendment, which was later than UC (14 days) and NC (10 days) amendment. A slow release of nitrate from the compost pellet will reduce the nitrate leaching into the environment. Thus, the adding of SC in the compost pile is one of the alternative methods to improve the quality of compost and plant nutrient retention.

A Literatural study on the hemorrhoids and hemorrhoids complicated by anal fistula (痔瘡과 痔瘻에 對한 文獻的 考察)

  • No, Hyun-Chan;Rho, Sek-Seon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.10 no.1
    • /
    • pp.284-305
    • /
    • 1997
  • A Literatural study on the etiological factors, classification, prescription of hemorrhoids and hemorrhoids complicated by anal fistula following results were obtained. 1. The cause of hemorrhoids are long time sit, long time gate, overfatigue, overeating, imbalance of stool( constipation or diarrhea), pregnant fertility(overfatigue after childbirth, insufficiency of middle warmer energy), uncontrol sexual excess, pathgenic factors of wetness, heat, wind, dry, genetic cause, excess of anxiety, pile up of heat poison, weakness of entrails and viscera. The cause of hemorrhoid complicated by anal fistula are attack of external wind, heatness, dry, fire, wetness(pathgenic factors), inapporiate treatment and chronic disease, greasy diet, excess of anxiety, constipation, uncontrol sexual excess, obstacle of circulation of vital energy and blood on anal site. 2. Classification of hemorrhoids are female hemorrhoids, male hemorrhoids, pulse hemorrhoids, intestines hemorrhoids, vital energy hemorrhoids, wine hemorrhoids, blood hemonhoids, flowing hemorrhoids. Classification with other method are external hemorrhoids, internal hemorrhoids, mixed hemorrhoids, excrescence hemorrhoids, nipple homorrhoids. External hemorrhoids is classified of varicosis of hemorrhoidal vein, connective tissue form, thrombus form. Classification of hemorrhoid complicated by anal fistula are simple lower hemorrhoid, lower mixed hemorrhoid, deep hemorrhoid, outer of one hole hemorrhoid, a horseshoe hemorrhoids. Once more classificated of four are space of sphincter muscle form, penetration sphincter muscle form, upper of sphincter muscle form, outer of sphincter muscle form. 3. Therapy method of hermorrhoid and hemorrhoid complicated by anal fistula are internal method, fumigation method method, ointment, method of close with medicine, necrotizing method, hot medicated compress( gxternal method), injection, insertion, bind, (operation) and acupuncture therapy (the others method) 4. Herb medicine for many used of internal method are Scutellaria baikalensis George(黃芩), Coptis japonia Makino(黃連), Rehmania giutinosa Liboschitz ex Fischer & Meyer(生地黃), Poncirus trifoliata Refinesque(枳殼), Sanguisorba officinalis Linne(地楡), Sophora japonica L.(槐花), Cnidium officinale Makino (川芎), Astragalus membranaceus Bunge(황기), Angelica gigas Nakai (當歸). 5. Herb medicine for many used of fumigation are Schlechtendalia Chinesis J. Bell (五倍子), Artemisia Vulgaris L. var indica Maxim(艾葉), Poncirus trifoliata Refinesque (枳殼), Nepeta japonica Maximowicy(荊芥), And herb medicine for many used of ointment are Calomelas(輕粉), Alum(白礬), Boswellia carterii Birdwood(乳香), Os Draconis Fossilia Ossis Mastodi(龍骨).

  • PDF

Effect of CPR Foundation Reinforcement Assessed by Compressive Loading Tests (CPR 공법의 압축재하시험을 통한 기초지반의 보강효과)

  • Kang, Seong-Seung;Kim, Jung-Han;Noh, Jeongdu;Ko, Chin-Surk
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.211-222
    • /
    • 2019
  • This study evaluates the yield load and allowable bearing capacity of ground in compressive loading tests to confirm the effect of CPR foundation reinforcement. The average compressive strength of the injection materials was higher than the planned compressive strength. Standard penetration tests for each stratum showed that foundation reinforcement improved the average N values, thereby increasing the bearing capacity of the ground. Compressive loading tests on two CPR piles revealed that the total and net settlement due to the maximum load exceed that permissible for the CPR pile diameter. The yield load and allowable bearing capacity calculated by the settlement criterion and the load-settlement curves varied greatly with the method applied. Therefore, it seems to be necessary to determine the optimum value through comprehensive analysis after applying various yield load calculation methods.