• Title/Summary/Keyword: Energy measurement

Search Result 3,939, Processing Time 0.034 seconds

CHARACTERISTICS OF THE KAERI NEUTRON REFERENCE FIELDS FOR THE CALIBRATION OF NEUTRON MONITORING INSTRUMENTS

  • Kim, Bong-Hwan;Kim, Jang-Lyul;Chang, Si-Young;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.243-248
    • /
    • 2001
  • Neutron reference fields of Korea Atomic Energy Research Institute (KAERI) for calibrating neutron measuring devices to be used in radiation workplace monitoring consist of two kinds of neutron spectra, the direct and the scattered neutron fields, which are produced by using radionuclide neutron sources, 252Cf and 241AmBe sources. Necessary parameters for calibration such as the anisotropy factor of each neutron source and the room-scattered fraction of some neutron surveymeters in the KAERI calibration facility were determined by calculation or measurement. Spectral measurement of scattered neutron fields were performed at each reference calibration point using a Bonner Multi-sphere Spectrometer (BMS) and the dosimetric quantities for calibration also estimated from the neutron energy spectra which were unfolded using the BUNKI code.

  • PDF

Load Measurements of 100 kW Wind Turbine (100 kW급 풍력발전기의 하중 측정)

  • Bae, Jae-Sung;Kim, Sung-One;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.27-33
    • /
    • 2004
  • Mechanical load measurements on blade and tower of Vestas 100 kW wind turbine has been reformed in Wollyong test site, Jeju island. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. The test facilities consisting of strain-gauges, telemetry and T-Mon system are installed in the wind turbine. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the test setup, the loads on the components are being measured and analysed for various external conditions of the wind turbine. A set of results for near rated wind speed has been presented in this paper.

DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise

  • Li, Shengquan;Zhao, Rong;Li, Juan;Mo, Yueping;Sun, Zhenyu
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents a composite control strategy for the active suppression of vibration due to the unknown disturbances, such as external excitation, harmonic effects and control spillover, as well as high-frequency accelerometer measurement noise in the all-clamped stiffened plate. The proposed composite control action based on the modal approach, consists of two contributions including feedback part and feedforward part. The feedback part is the well-known PID controller, which is widely used to increase the structure damping and improve its dynamic performance close to the resonance frequencies. In order to get better performance for vibration suppression, the weight matrixes is optimized by chaos sequence. Then an improved disturbance observer (IDOB) as the feedforward compensation part is developed to enhance the vibration suppression performance of PID under various disturbances and uncertainties. The proposed IDOB can simultaneously estimate the various disturbances dynamically as well as measurement noise acting on the system and suppress them by feedforward compensation design. A rigorous analysis is also given to show why the IDOB can effectively suppress the unknown disturbances and measurement noise. In order to verify the proposed composite control algorithm (IDOB-PID), the dSPACE real-time simulation platform is used and an experimental platform for the all-clamped stiffened plate active vibration control system is set up. The experimental results demonstrate the effectiveness, practicality and strong anti-disturbances ability of the proposed control strategy.

A Study on K2 Rifle Recoil Measurement and Analysis for Virtual Reality Marksmanship (가상현실 사격훈련을 위한 탄종별 K2 소화기의 주퇴산출 및 분석 연구)

  • Kim, Jong-Hwan;Jin, Youngho;Kwak, Yunki
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.13-27
    • /
    • 2020
  • Purpose: The purpose of this study is to present a recoil measurement and analysis of K2 rifle for the development of a virtual reality marksmanship training in the Republic of Korea Army. Methods: For the recoil measurement, a test-bed is built by a barrel that has exact dimensions of K2 rifle and three piezoelectric pressure sensors mounted on the barrel. Data of over 200 rounds of 5.56mm M193 and K100 bullets are collected and analyzed from live fire experiments. For the recoil analysis, both the free recoil method and the gas exhaust aftereffect method are used to calculate a recoil velocity, momentum and kinetic energy of K2 rifle by applying the law of conservation of momentum. In addition, a new method is proposed that uses the third law of motion and the chamber pressure model for the recoil measurement Results: The results show how different between the previous and proposed methods with respect to M193 and K100 bullets of K2 rifle. In M193, the free recoil method demonstrates 1.113, 4.197, and 2.335, the gas exhaust aftereffect method computes 1.698, 6.407, and 5.441, and the proposed method calculates 0.990, 3.734, and 1.848 in recoil velocity, momentum and kinetic energy, respectively. In K100, the free recoil method demonstrates 1.190, 4.487, and 2.669, the gas exhaust aftereffect method computes 1.776, 6.699, and 5.949, and the proposed method calculates 1.060, 3.998, and 2.119 in recoil velocity, momentum and kinetic energy, respectively. Conclusion: This study implements live fire experiments to provide recoil velocity, momentum, and kinetic energy of K2 rifle using both M193 and K100 bullets. For the development of the army virtual reality marksmanship, the results in this paper would be useful to design and produce a gun and/or a rifle of virtual reality.

Development of Measurement Technology for Uptake and Diffusivity of Hydrogen gas in Rubber Materials using Volumetric Analysis (부피 분석법을 이용한 고무 소재의 수소 기체 장입량 및 확산도 측정 기술 개발)

  • LEE, JI HUN;JUNG, JAE KAP;BAEK, UN BONG;CHUNG, KI SOO
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • We developed a technology that can measure the hydrogen uptake and diffusivity of rubber materials by using the volumetric analysis method and diffusivity analysis program through the measurement of the water level in the graduated cylinder. In this method, hydrogen gas is charged at a certain pressure for a certain period of time for a rubber material exposed to a high-pressure hydrogen gas environment, and then the pressure is reduced to measure the change in the water level in the graduated cylinder in real time, and based on the measured value, it is a technology that can evaluate hydrogen uptake and diffusivity using diffusivity analysis program. Using this method, the hydrogen uptake and diffusivity of the NBR material were measured with respect to the change in the type and weight ratio of the filler used to improve the physical properties of the rubber material. In addition, uncertainty analysis was performed on the diffusivity measurement method.

Investigation of the optimum condition for the quantitative analysis of Cu sample by Laser induced breakdown spectroscopy (구리 시료의 정량분석을 위한 LIBS의 최적조건 연구)

  • Kim, Seunghyun;Shin, Heesung;Ju, Junesik;Kim, Hodong
    • Analytical Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.141-147
    • /
    • 2009
  • A laser induced breakdown spectroscopy (LIBS) measurement was carried out to derive an optimized measurement condition with a high reproducibility and to grow a plasma sphere to 20 mm high under a 600 mtorr vacuum in order to improve an accuracy of measurement. The measurement of the plasma was taken at a 6.0 mm distance, in the direction of a plasma sphere, from a sample. This location belongs to the outer sphere region in the plasma. The calibration curve of 'Ni' and 'Cu' was acquired by the signal intensity ratio and the atomic ratio for the samples, and linear regression of 'Cu' was $R^2$=0.9886, and the linear regression of 'Ni' was $R^2$=0.9988. The accuracy of LIBS was improved pre-existence as the measurement error of 'Ni' was 0.78%.

Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications (FOWLP 적용을 위한 Cu 재배선과 WPR 절연층 계면의 정량적 계면접착에너지 측정방법 비교 평가)

  • Kim, Gahui;Lee, Jina;Park, Se-hoon;Kang, Sumin;Kim, Taek-Soo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • The quantitative interfacial adhesion energy measurement method of copper redistribution layer and WPR dielectric interface were investigated using $90^{\circ}$ peel test, 4-point bending test, double cantilever beam (DCB) measurement for FOWLP Applications. Measured interfacial adhesion energy values of all three methods were higher than $5J/m^2$, which is considered as a minimum criterion for reliable Cu/low-k integration with CMP processes without delamination. Measured energy values increase with increasing phase angle, that is, in order of DCB, 4-point bending test, and $90^{\circ}$ peel test due to increasing roughness-related shielding and plastic energy dissipation effects, which match well interfacial fracture mechanics theory. Considering adhesion specimen preparation process, phase angle, measurement accuracy and bonding energy levels, both DCB and 4-point bending test methods are recommended for quantitative adhesion energy measurement of RDL interface depending on the real application situations.

Electricity Energy Savings Evaluation of Inverter DSM Program based on the Measurement and Estimation

  • Kim, Hoi-Cheol;Kim, In-Soo;Park, Jong-Bae;Shin, Joong-Rin
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.45-50
    • /
    • 2001
  • The impact evaluation of a DSM program is a very important issue since the results are used to determine the sustainability of a program. In general. to estimate the impacts of a DSM program it is required to measure the electricity usage changes before and after a program. Since the measurement-based approaches cost highly, most of the conventional evaluations are based on the average figures. However estimation of the average-based impacts can lead to both distorted results of over/under estimation of kW and kWh savings and non-optimal DSM planning. In this paper, we have developed a new multi-point measurement approach which can evaluate kW and kWh savings of a DSM program more exactly. To do this, the saving rate and operating rate are defined and set as the function of load factor of a customer, and these rates are incorporated with the conventional diffusion function of Bass to project the future impacts of a DSM program. The case study is performed on the inverter program of Korea by using the suggested approach.

  • PDF

Infrared Thermography Characterization of Defects in Seamless Pipes Using an Infrared Reflector

  • Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Lee, Jea-Jung;Kim, Won-Tae;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Infrared thermography uses infrared energy radiated from any objects above absolute zero temperature, and the range of its application has been constantly broadened. As one of the active test techniques detecting radiant energy generated when energy is applied to an object, ultrasound infrared thermography is a method of detecting defects through hot spots occurring at a defect area when 15~100 kHz of ultrasound is excited to an object. This technique is effective in detecting a wide range affected by ultrasound and vibration in real time. Especially, it is really effective when a defect area is minute. Therefore, this study conducted thermography through lock-in signal processing when an actual defect exists inside the austenite STS304 seamless pipe, which simulates thermal fatigue cracks in a nuclear power plant pipe. With ultrasound excited, this study could detect defects on the rear of a pipe by using an aluminium reflector. Besides, by regulating the angle of the aluminium reflector, this study could detect both front and rear defects as a single infrared thermography image.

A Study on Accuracy Detection Method for Signal Peak Voltage (신호용 PEAK 전압 정밀검출에 관한 연구)

  • Park, Ho-Chul;Sung, Hyung-Su;Han, Seung-Moon;Han, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2528-2530
    • /
    • 2000
  • In general, Diode makes a major role in electronic circuit. For example, switching of rectifier, cross current of switching rectifier, energy transfer of electronic element and reverse charge of capacitor, voltage insulation, energy feedback from load to power supply, and such as recovery of storaged energy. Generally, We regard power diode as ideal element, but it has a certain boundary actually, specially, We use diode for detecting circuit peak hold voltage signal. It has cut in voltage. It occurs error of measurement value namely. This error, below in region diode voltage drop (0.7v) measurement value is wholesome signal, Specially, We can not get precision data. Therefore, precision level is low between theoretical and measurement data because of error in actual circuit. Conclusionally, In this paper, We define the error concerning to the power diode characteristics which is used detecting of the minute signal, and recommend the method that minimize measurement error.

  • PDF