• Title/Summary/Keyword: Energy maps

Search Result 193, Processing Time 0.027 seconds

HOW TO DEAL WITH RADIO ASTRONOMY INTERFERENCE

  • UMAR, ROSLAN;HAZMIN, SABRI NOR;ABIDIN, ZAMRI ZAINAL;IBRAHIM, ZAINOL ABIDIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.691-693
    • /
    • 2015
  • Radio sources are very weak, as they can travel through large distances. Radio sources also have photons with low energies compared to others electromagnetic waves (EM). Microwave photons have a little more energy than radio waves, infrared photons have still more, then visible, ultraviolet, X-rays, and the most energetic electromagnetic wave is gamma-rays. Radio astronomy studies are restricted due to radio frequency interference (RFI) produced by people. If this disturbance is not minimized, it poses critical problems for astrophysical studies. The purpose of this paper is to profile RFI maps in Peninsular Malaysia with a minimum mapping technique for RFI interference. Decision-making processes using GIS (Geographical Information System) for the selection requires gathering information for a variety of parameters. These factors affecting the selection process are also taken into account. In this study, various factors or parameters are involved, such as the availability of telecommunications transmission (including radio and television), rainfall, water lines and human activity. This mapping step must be followed by RFI site testing in order to identify areas of low RFI. This study will benefit radio astronomy research, especially regarding the RFI profile.

Simple Fabrication of Green Emission and Water-Resistant CsPbBr3 Encapsulation Using Commercial Glass Frits (상업용 유리프릿의 소결 공정을 이용한 내수성을 갖는 CsPbBr3/Glass 세라믹 복합체의 제작)

  • Mun, Na-eun;Kim, Sunghoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.54-59
    • /
    • 2021
  • In this work, narrow-band green-emitting CsPbBr3 particles are embedded in commercialized glass composites by a facile dry process. By optimizing the method through sintering in glass frit (GF) composites including CsBr and PbBr2, used as precursors, the encapsulation of CsPbBr3 particles made them waterproof with green fluorescence. To improve the fluorescent properties by reducing aggregation of CsPbBr3, fumed silica (FS) is additionally used to help particles avoid bulking up in the glass matrix. The CsPbBr3 perovskite/glass composites are characterized using scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) maps, which support the existence of CsPbBr3 particles in the glass matrix. The photoluminescence (PL) properties demonstrate that the emission spectrum peak, full width at half maximum (FWHM), and photoluminescence quantum yield (PLQY) values are 519 nm, 17 nm, and 17.7 %. We also confirm the water-resistant properties. To enhance water/moisture stability, the composite sample is put directly into water, with its PLQY monitored periodically under UV light.

Synthesis and Properties of La1-xSrxMnO3 System as Air Electrode for Solid Oxide Fuel Cell (고체산화물 연료전지의 공기극으로서 La1-xSrxMnO3 계의 합성 및 특성)

  • Lee, You-Kee;Lee, Young-Ki
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.470-475
    • /
    • 2012
  • $La_{1-x}Sr_xMnO_3$(LSM,$0{\leq}x{\leq}0.5$) powders as the air electrode for solid oxide fuel cell were synthesized by a glycine-nitrate combustion process. The powders were then examined by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The as-formed powders were composed of very fine ash particles linked together in chains. X-ray maps of the LSM powders milled for 1.5 h showed that the metallic elements are homogeneously distributed inside each grain and in the different grains. The powder XRD patterns of the LSM with x < 0.3 showed a rhombohedral phase; the phase changes to the cubic phase at higher compositions($x{\geq}0.3$) calcined in air at $1200^{\circ}C$ for 4 h. Also, the SEM micrographs showed that the average grain size decreases as Sr content increases. Composite air electrodes made of 50/50 vol% of the resulting LSM powders and yttria stabilized zirconia(YSZ) powders were prepared by colloidal deposition technique. The electrodes were studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell(SOFC). Reproducible impedance spectra were confirmed using the improved cell, which consisted of LSM-YSZ/YSZ. The composite electrode of LSM and YSZ was found to yield a lower cathodic resistivity than that of the non-composite one. Also, the addition of YSZ to the $La_{1-x}Sr_xMnO_3$ ($0.1{\leq}x{\leq}0.2$) electrode led to a pronounced, large decrease in the cathodic resistivity of the LSM-YSZ composite electrodes.

Specification of Chemical Properties of Feed Coal and Bottom Ash Collected at a Coal-fired Power Plant

  • Ma, Chang-Jin;Kim, Jong-Ho;Kim, Ki-Hyun;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.80-88
    • /
    • 2010
  • In order to offer a better understanding of air pollution of China as well as East Asia we attempted to characterize the chemical properties of the raw coal materials mined in China and their combusted bottom ashes generated from coal fired power plant. To this end, we measured the chemical characteristics of individual bottom ashes and feed coal fragments collected at a coal fired power generator which was operated with the raw coal dug at a coal mine in China. The chemical properties of these two sample types were determined by a synchrotron radiation X-ray fluorescence (SR-XRF) microprobe method. Through an application of such technique, it was possible to draw the 2D elemental maps in and/or on raw coal fragments and fired bottom ashes. The pulverized fine pieces of feed coal mainly consisted of mineral components such as Fe, Ca, Ti, Ca, and Si, while Fe was detected as overwhelming majority. The elemental mass of combusted bottom ash shows strong enrichment of many elements that exist naturally in coal. There were significant variations in chemical properties of ash-to-ash and fragment-to-fragment. Although we were not able to clearly distinguish As and Pb peaks because of the folding in their X-ray energies, these two elements can be used as tracers of coal fire origin.

Study on the Characteristics of Low-pressure Automotive Polymer Electrolyte Membrane Fuel Cell System Efficiency with Blower Configuration (블로워 구성 변경에 따른 상압형 자동차용 고분자전해질형 연료전지 시스템의 효율 특성 연구)

  • KIM, IL-JOONG;LEE, JUNG-JAE;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.181-189
    • /
    • 2018
  • Polymer electrolyte membrane fuel cell (PEMFC) system receives great attention as a promising power device for automotive applications. For the wide commercialization, the efficiency and performance of automotive PEMFC system should be further improved in terms of total system (stack and balance of plant [BOP]). Air supply module, which is a major part of the BOP, greatly affects the efficiency of automotive PEMFC system. In this paper, a systematic study on the low-pressure automotive PEMFC system was made in an attempt to enhance the net system efficiency. This study mainly presents an investigation of the effect of blower configuration (1-blower and 2-blower) on the net system efficiency of automotive PEMFC system. For this purpose, the effect of operating pressure and cathode stoichiometry on the system efficiency was investigated with stack temperature under the fixed net system power condition. Results indicate that 1-blower system is better in system efficiency over 2-blower system under an air stoichiometry of 2. However, 2-blower system is better in system efficiency under an air stoichiometry of 3. The simulation results show that the optimum operating strategy needs to be established for various blower system configurations considering blower performance maps.

The Limited Impact of AGN Outflows: IFU study of 20 local AGNs

  • Bae, Hyun-Jin;Woo, Jong-Hak;Karouzos, Marios;Gallo, Elena;Flohic, Helene;Shen, Yue;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.28.1-28.1
    • /
    • 2017
  • To investigate AGN outflows as a tracer of AGN feedback on the host galaxies, we perform integral-field spectroscopy of 20 type 2 AGNs at z<0.1 using the Magellan/IMACS and the VLT/VIMOS. The observed objects are luminous AGNs with the [O III] luminosity >$10^{41.5}erg/s$, and exhibit strong outflow signatures in the [O III] kinematics. We obtain the maps of the narrow and broad components of [O III] and $H{\alpha}$ lines by decomposing the emission-line profile. The broad components in both [O III] and $H{\alpha}$ represent the non-gravitational kinematics, (i.e., gas outflows), while the narrow components represent the gravitational kinematics (i.e., rotational disks), especially in $H{\alpha}$. By using the spatially integrated spectra within the flux-weighted size of the narrow-line region, we estimate the outflow energetics. The ionized gas mass is $(1.0-38.5){\times}10^5M_{\odot}$, and the mean mass outflow rate is $4.6{\pm}4.3M_{\odot}/yr$, which is a factor of ~260 higher than the mean mass accretion rate $0.02{\pm}0.01M_{\odot}/yr$. The mean energy injection rate is $0.8{\pm}0.6%$ of the AGN bolometric luminosity Lbol, while the mean momentum flux is $(5.4{\pm}3.6){\times}L_{bol}/c$, except for two most kinematically energetic AGNs. The estimated energetics are consistent with the expectations for energy-conserving outflows from AGNs, yet we do not find any supporting evidence of instantaneous star-formation quenching due to the outflows.

  • PDF

Comparison of the Wind Speed from an Atmospheric Pressure Map (Na Wind) and Satellite Scatterometer­observed Wind Speed (NSCAT) over the East (Japan) Sea

  • Park, Kyung-Ae;Kim, Kyung-Ryul;Kim, Kuh;Chung, Jong-Yul;Conillor, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.173-184
    • /
    • 2003
  • Major differences between wind speeds from atmospheric pressure maps (Na wind) and near­surface wind speeds derived from satellite scatterometer (NSCAT) observations over the East (Japan) Sea have been examined. The root­mean­square errors of Na wind and NSCAT wind speeds collocated with Japanese Meteorological Agency (JMA) buoy winds are about $3.84\;ms^{-1}\;and\;1.53\;ms^{-1}$, respectively. Time series of NSCAT wind speeds showed a high coherency of 0.92 with the real buoy measurements and contained higher spectral energy at low frequencies (>3 days) than the Na wind. The magnitudes of monthly Na winds are lower than NSCAT winds by up to 45%, particularly in September 1996. The spatial structures between the two are mostly coherent on basin­wide large scales; however, significant differences and energy loss are found on a spatial scale of less than 100 km. This was evidenced by the temporal EOFs (Empirical Orthogonal Functions) of the two wind speed data sets and by their two­dimensional spectra. Since the Na wind was based on the atmospheric pressures on the weather map, it overlooked small­scale features of less than 100 km. The center of the cold­air outbreak through Vladivostok, expressed by the Na wind in January 1997, was shifted towards the North Korean coast when compared with that of the NSCAT wind, whereas NSCAT winds revealed its temporal evolution as well as spatial distribution.

THE KOMPSAT- I PAYLOADS OVERVIEW

  • Paik, Hong-Yul;Park, Gi-Hyuk;Youn, Hyeong-Sik;Lee, Seunghoon;Woo, Sun-Hee;Shim, Hyung-Sik;Oh, Kyoung-Hwan;Cho, Young-Min;Yong, Sang-Soon;Lee, Sang-Gyu;Heo, Haeng-Pal
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.301-306
    • /
    • 1998
  • Korea Aerospace Research Institute (KARI) is developing a Korea Multi-Purpose Satellite I (KOMPSAT-I) which accommodates Electro-Optical Camera (EOC), Ocean Scanning Multi-spectral Imager (OSMI), and Space Physics Sensor (SPS). The satellite has the weight of about 500kg and will be operated on the 10:50 AM sun-synchronized orbit with the altitude of 685 km. The satellite will be launched in 1999 and its lifetime is expected to be over 3 years. The main mission of EOC is the cartography to provide the images from a remote earth view for the production of 1/25000-scale maps of KOREA. EOC collects 510 ~ 730 nm panchromatic imagery with the ground sample distance(GSD) of 6.6 m and the swath width of 17 km by push broom scanning. EOC also can scan $\pm$45 degree across the ground track using body pointing method. The primary mission of OSMI is worldwide ocean color monitoring for the study of biological oceanography. It will generate 6 band ocean color images with 800 km swath width and 1km GSD by whiskbroom scanning. OSMI is designed to provide on-orbit spectral band selectability in the spectral range from 400 nm to 900 nm through ground command. This flexibility in band selection can be used for various applications and will provide research opportunities to support the next generation sensor design. SPS consists of High Energy Particle Detector (HEPD) and ionosphere Measurement Sensor (IMS). HEPD has missions to characterize the low altitude high-energy Particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities at the KOMPSAT orbit.

  • PDF

Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning (오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템)

  • Lee, JeongHwi;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1005-1012
    • /
    • 2021
  • Recently, the use of various location-based services-based location information systems using maps on the web has been expanding, and there is a need for a monitoring system that can check power demand in real time as an alternative to energy saving. In this study, we developed a deep learning real-time virtual power demand prediction web system using open source-based mapping service to analyze and predict the characteristics of power demand data using deep learning. In particular, the proposed system uses the LSTM(Long Short-Term Memory) deep learning model to enable power demand and predictive analysis locally, and provides visualization of analyzed information. Future proposed systems will not only be utilized to identify and analyze the supply and demand and forecast status of energy by region, but also apply to other industrial energies.

Carbon neutrality potentials in local governments under different forest management - The Study Case of Paju and Goseong - (산림관리에 따른 기초지자체 규모의 탄소중립 가능성 평가 - 파주시와 고성군을 대상으로 -)

  • Lee, Do-Hyung;Choe, Hye-Yeong;Kim, Joo-Young;Cheong, Yu-Kyong;Kil, Sung-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.17-28
    • /
    • 2022
  • We evaluated the effect of CO2 offsetting by estimating changes in carbon uptake under various forest management scenarios and proposed forest management strategies to achieve carbon neutrality. Paju and Goseong, which have relatively large forest areas but different industrial characteristics, were selected for the study sites. The current state of forest distribution was analyzed using forest type maps and aerial photographs, and the amount of carbon uptake was calculated using the equation presented by the IPCC Guidelines for National Greenhouse Gas Inventories and the national emission/absorption coefficients from the Korea National Greenhouse Gas Inventory Report. As of 2015, the forest carbon absorption in Paju and Goseong was 49,931 t/yr and 94,225 t/yr, respectively, and the annual carbon absorption per unit area was 2.28 t/ha/yr and 2.16 t/ha/yr. Under the forest management scenarios, the annual maximum carbon absorption per unit area is estimated to increase to 5.68 t/ha/yr in Paju and 4.22 t/ha/yr in Goseong, and this absorption would increase further if urban forests were additionally created. Even if the current forests of Paju and Goseong are maintained as they are, emissions from electricity use can be sufficiently offset. However, by applying appropriate forest management strategies, emissions from sectors other than electricity use could be offset. This study can be applied to the establishment of carbon absorption strategies in the forest sector to achieve carbon neutrality.