Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
Journal of Bio-Environment Control
/
v.30
no.4
/
pp.419-428
/
2021
In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.
Kim, Jong-Min;Choi, Jae-Boong;Lee, Sang-Won;Cho, Doo-Ho;Lee, Pil-Ho;Kim, Young-Jin
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.23
no.9
/
pp.610-619
/
2011
This paper investigates the simplified comfort index and control logic for VRF (Variable Refrigerant Flow) system by using 3 environmental factors such as temperature, humidity and air flow. Indoor test under thermal load was conducted to explore relationship of each environment factors that is related to simplified comfort index. Simplified comfort function that has 3 environmental variables was proposed based on survey results. Each factor is measured and comfort preference was surveyed by more than 30 subjects in the indoor comfort test. Moreover, control logic for VRF system was developed and then simulated by using thermal load calculation method and verified with test. The proposed comfort function was in good agreement with survey results, and also verification test trend of comfort change and maintenance are quite similar with survey. Furthermore, through the additional test data analysis some differences of comfort according to position of people staying in the test room were additionally investigated by air flow. People being under an exit of air in the indoor air-conditioner feel more comfortable condition and speed of response to comfort change is relatively fast.
Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong;Lee Unjang;Royl P.;Travis J. R.
Nuclear Engineering and Technology
/
v.36
no.1
/
pp.24-35
/
2004
In order to analyze the hydrogen distribution during a severe accident in the APR1400 containment, GASFLOW II was used. For the APR1400 NPP, a hydrogen mitigation system is considered from the design stage, but a fully time-dependent, three-dimensional analysis has not been performed yet. In this study GASFLOW code II is used for the three-dimensional analysis. The first step to analysis involving hydrogen behavior in a full containment with the GASLOW code is to generate a realistic geometry model, which includes nodalization and modeling of the internal structures such as walls, ceilings and equipment. Geometry modeling of the APR1400 is conducted using GUI program by overlapping the containment cut drawings in a graphical file format on the mesh view. The total number of mesh cells generated is 49,476. And the calculated free volume of the APR1400 containment by GASFLOW is almost the same as the value from the GOTHIC modeling. A hypothetical SB-LOCA scenario beyond design base accident was selected to analyze the hydrogen behavior with the hydrogen mitigation system. The source of hydrogen and steam for the GASFLOW II analysis is obtained from a MAAP calculation. Combustion pressure and temperature load possibilities within the compartments used in the GOTHIC analysis are studied based on the Sigma-Lambda criteria. Finally the effectiveness of HMS installed in the APR1400 containment is evaluated from the point of severe accident management
The calculation method of infiltration loss in greenhouse has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the infiltration rates using the tracer gas method in plastic greenhouses equipped with various thermal curtains. And then the calculation methods of infiltration loss in greenhouses were reviewed. Infiltration rates of the multi-span and single-span greenhouses were measured in the range of $0.042{\sim}0.245h^{-1}$ and $0.056{\sim}0.336h^{-1}$ respectively, single-span greenhouses appeared to be slightly larger. Infiltration rate of the greenhouse has been shown to significantly decrease depending on the number of thermal curtain layers without separation of single-span and multi-span. As the temperature differences between indoor and outdoor increase, the infiltration rates tended to increase. In the range of low wind speed during the experiments, changes of infiltration rate according to the outdoor wind speed could not find a consistent trend. Infiltration rates for the greenhouse heating design need to present the values at the appropriate temperature difference between indoor and outdoor. The change in the infiltration rate according to the wind speed does not need to be considered because the maximum heating load is calculated at a low wind speed range. However the correction factors to increase slightly the maximum heating load including the overall heat transfer coefficient should be applied at the strong wind regions. After reviewing the calculation method of infiltration loss, a method of using the infiltration heat transfer coefficient and the greenhouse covering area was found to have a problem, a method of using the infiltration rate and the greenhouse volume was determined to be reasonable.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2006.05a
/
pp.197-202
/
2006
The low-altitude earth observation satellite is generally equipped with high performance camera as a main payload which is vulnerable to vibration environment. During the launch process of a satellite, the combustion and jet noise of launch vehicle produce severe acoustic environment and the acoustic loads induced may damage the critical equipments of the satellite including the camera. Therefore to predict and simulate the effect of the acoustic environment which the satellite has to sustain at the lift-off event is very important process to support the load-resistive design and test-qualification of components. Statistical Energy Analysis(SEA) has been widely used to estimate the vibro-acoustic responses of the structures and gives statistical but reliable results in the higher frequency region with less modeling efforts and calculation time than the standard FEA. In this study, SEA technique has been applied to a 3-Dimensional model of a low-altitude earth observation satellite to predict the acceleration responses on the structural components induced by the high level acoustic field in the launch vehicle fairing. In addition, the expected response on each critical component panel was calculated by the classical method in consideration of the mass loading and imposed sound pressure level, and then compared with SEA results.
By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.
Jouneghani, Habib Ghasemi;Fanaie, Nader;Haghollahi, Abbas
Steel and Composite Structures
/
v.45
no.3
/
pp.437-454
/
2022
Elliptic-braced simple resisting frame as a new lateral bracing system installed in the middle bay of frame in building facades has been recently introduced. This system not only creates a problem for opening space from the architectural viewpoint but also improves the structural behavior. Despite the researches on the seismic performance of lateral bracing systems, there are few studies performed on the effect of the stiffness parameters on the elastic story drift and calculation of period in simple braced steel frames. To overcome this shortcoming, in this paper, for the first time, an analytical solution is presented for calculating elastic lateral stiffness in a simple steel frame equipped with elliptic brace subjected to lateral load. In addition, for the first time, in this study, a precise formulation has been developed to evaluate the elastic stiffness variation in a steel frame equipped with a two-dimensional single-story single-span elliptic brace using strain energy and Castigliano's theorem. Thus, all the effective factors, including axial and shear loads as well as bending moments of elliptic brace could be considered. At the end of the analysis, the lateral stiffness can be calculated by an improved and innovative relation through the energy method based on the geometrical properties of the employed sections and specification of the used material. Also, an equivalent element of an elliptic brace was presented for the ease of modeling and use in linear designs. Application of the proposed relation have been verified through a variety of examples in OpenSees software. Based on the results, the error percentage between the elastic stiffness derived from the developed equations and the numerical analyses of finite element models was very low and negligible.
This study was suggested to develop sustainable durability design system and proposed the plan to evaluate design conditions that meet the intended service life and $LCCO_{2}$ reduction level of reinforced concrete structure easily from the early design stage. For that the W/B and covering depth of the concrete structure were calculated through calculation of service life based on standard specification expression and the quantitative reduction rate of the vertical member of reinforced concrete structure by the calculated W/B was applied. Life cycle of building classified into construction stage, operation stage, maintenance stage, and demolition/disposal stage and the method of $CO_{2}$ evaluation of each stage was proposed. For construction stage, the major construction materials that take up over 80% $CO_{2}$ emitting during building construction were selected and the $CO_{2}$ evaluation method for 5 standard apartment houses was proposed. Also, for operation stage, $CO_{2}$ emission was calculated through calculation of heating load by energy efficiency rating certification system. For maintenance stage, $CO_{2}$ emission was calculated using concept of re-construction by life and for demolition/disposal stage was calculated with the use of construction standard estimate. As a result of the case study by such evaluation methods, 80 years of service life and 17 specifications of sustainable durability design that meet the 40% intended $LCCO_{2}$ reduction level were deduced. The Maximum $LCCO_{2}$ reduction rate was analyzed by 47.2%.
In this study, the detailed fuel assembly stress analysis model to evaluate the structural integrity for seismic and blowdown accidents is developed. For this purpose, as the first step, the program MAIN which identifies the worst bending mode shaped fuel assembly(FA) in core model is made. And the finite element model for stress calculation of FA components is developed. In the model the fuel rods (FRs) and the guide thimbles are modelled by 3-dimensional beam elements, and the spacer grid spring is modelled by a linear and relational spring. The constraints come from the results of the program MAIN. The stress analysis of the 16$\times$16 type FA under arbitary seismic load is performed using the developed program and modelling technique as an example. The developed stress model is helpful for the stress calculation of FA components for seismic and blowdown loads to evaluate the structural integrity of FA.
설계단계의 풍력발전시스템 하중계산은 20년이 넘는 시스템 수명과 효율을 결정하는 중요한 부분이다. 일반적인 규정서 기반의 설계하중 계산은 실제 풍황 조건인 발전기 상호 간섭, 설치 지형의 특성 등을 상세히 묘사하기 어렵다. 풍력발전기 설계 단계에서 검토된 평균풍속 또는 난류강도 등이 규정(IEC, GL 등)을 만족한다 하더라도 설계값과 실제값은 서로 다른 결과를 나타낼 수 있다. 본 연구에서는 기 설계된 풍력발전기가 최적 효율을 낼 수 있는 풍력단지의 풍황 특성(평균풍속과 난류강도 등)의 범위를 보다 정확하게 제시하여 설치되는 풍력발전기의 수명과 효율을 높이는 방법을 연구하였다. 이를 위하여 당사의 2MW급 IEC Class II-A로 설계된 직접 구동형 풍력발전기에 대해, 다양한 평균 풍속(7m/s~10m/s)과 난류강도(14%~20%)를 고려한 하중 계산을 수행하였다. 하중 분석을 통해 실제 풍황 조건에 따른 극한하중 산출 및 피로수명의 민감도를 검토하여 풍력발전기 운용의 풍속과 난류강도의 최적범위 제시하여 발전단지 설계에 활용할 수 있도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.