• Title/Summary/Keyword: Energy injection

Search Result 1,093, Processing Time 0.027 seconds

A Study of $NO_x$ Reduction in Stage Combustion (단계적 연소의 $NO_x$ 저감에 대한 연구)

  • 채재우;전영남;이운영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1556-1571
    • /
    • 1993
  • Nitrogen oxides ($NO_x$) are air pollutants which are generated from the combustion of fossil fuels. Stage combustion is an effective method to reduce $NO_x$ emissions. The effects of $NO_x$ reduction by stage combustion in a pilot scale combustor(6.6kW) have been investigated using propane gas flames laden with NH$_{3}$ as Fuel-N. The results in this study are follows; (1) $NO_x$ emissions are dependent on the reducing environment of fuel-rich zone regardless of total air ratio. The maximum $NO_x$ reduction is at the stoichiometric ratio of 0.8 to 0.9 in the reducing zone. (2) $NO_x$ reduction is maximum when burnout air is injected at the point where the oxygen in reducing zone is almost consumed. (3) $NO_x$ reduction is dependent upon the temperature of reducing zone with best effect above 950.deg. C in the reducing zone. (4) The fuel stage combustion is more effective to reduce $NO_x$ formation in the wide range of stoichiometric ratio than two stage combustion. (5) The results of this study could be utilized mainly in a design strategy for low $NO_x$ emission from the combustion of high fuel-nitrogen in energy sources ratio than as an indication of the absolute levels of $NO_x$ which can be achieved by stage combustion techniques in large scale facilities.

Fault Reactivation Modeling Using Coupled TOUGH2 and FLAC3D Interface Model: DECOVALEX-2019 Task B (TOUGH2-FLAC3D Interface 모델을 통한 단층 재활성 모델링: DECOVALEX-2019 Task B)

  • Park, Jung-Wook;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.335-358
    • /
    • 2020
  • We present a numerical model to simulate coupled hydro-mechanical behavior of fault using TOUGH-FLAC simulator. This study aims to develop a numerical method to estimate fluid injection-induced fault reactivation in low permeability rock and to access the relevant hydro-mechanical stability in rock as part of DECOVALEX-2019 Task B. A coupled fluid flow and mechanical interface model to explicitly represent a fault was suggested and validated from the applications to benchmark simulations and the field experiment at Mont Terri underground laboratory in Switzerland. The pressure build-up, hydraulic aperture evolution, displacement, and stress responses matched those obtained at the site, which indicates the capability of the model to appropriately capture the hydro-mechanical processes in rock fault.

An Analysis of Exposure Dose on Hands of Radiation Workers using a Monte Carlo Simulation in Nuclear Medicine (몬테카를로 모의 모사를 이용한 핵의학과 방사선작업종사자의 손에 대한 피폭선량 분석)

  • Jang, Dong-Gun;Kang, Sesik;Kim, Junghoon;Kim, Changsoo
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.477-482
    • /
    • 2015
  • Workers in nuclear medicine have performed various tasks such as production, distribution, preparation and injection of radioisotope. This process could cause high radiation exposure to wokers' hand. The purpose of this study was to investigate shielding effect for r-rays of 140 and 511 keV by using Monte-carlo simulation. As a result, it was effective, regardless of lead thickness for radiation shielding in 140 keV r-ray. However, it was effective in shielding material with thickness of more than only 1.1 mm in 511keV r-ray. And also it doesn't effective in less than 1.1 mm due to secondary scatter ray and exposure dose was rather increased. Consequently, energy of radionuclide and thickness of shielding materials should be considered to reduce radiation exposure.

Study of Producing Natural Gas From Gas Hydrate With Industrial Flue Gas (산업용 배기가스를 이용한 가스 하이드레이트로부터의 천연가스 생산 연구)

  • Seo, Yu-Taek;Kang, Seong-Pil;Lee, Jae-Goo;Cha, Min-Jun;Lee, Huen
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.188-191
    • /
    • 2008
  • There have been many methods for producing natural gas from gas hydrate reservoirs in permafrost and sea floor sediments. It is well knownthat the depressurization should be a best option for Class 1 gas hydrate deposit, which is composed of tow layers: hydrate bearing layer and an underlying free gas. However many of gas hydrate reservoirs in sea floor sediments are classified as Class 2 that is composed of gas hydrate layer and mobile water, and Class 3 that is a single gas hydrate layer. The most appropriate production methods among the present methods such as thermal stimulation, inhibitor injection, and controlled oxidation are still under development with considering the gas hydrate reservoir characteristics. In East Sea of Korea, it is presumed that the thick fractured shale deposits could be Class 2 or 3, which is similar to the gas hydrate discovered offshore India. Therefore it is needed to evaluate the possible production methods for economic production of natural gas from gas hydrate reservoir. Here we would like to present the production of natural gas from gas hydrate deposit in East Sea with industrial flue gases from steel company, refineries, and other sources. The existing industrial complex in Gyeongbuk province is not far from gas hydrate reservoir of East Sea, thus the carbon dioxide in flue gas could be used to replace methane in gas hydrate. This approach is attractive due to the suggestion of natural gas productionby use of industrial flue gas, which contribute to the reduction of carbon dioxide emission in industrial complex. As a feasibility study, we did the NMR experiments to study the replacement reaction of carbon dioxide with methane in gas hydrate cages. The in-situ NMR measurement suggeststhat 42% of methane in hydrate cages have been replaced by carbon dioxide and nitrogen in preliminary test. Further studies are presented to evaluate the replacement ratio of methane hydrate at corresponding flue gas concentration.

  • PDF

THE STUDY OF BONE MINERAL DENSITY IN THE MANDIBLE OF STREPTOZOTOCIN-INDUCED DIABETIC RATS (흰쥐에서 당뇨 유도 후 하악골 골밀도 변화에 관한 연구)

  • Jeong, Seok-Young;Shin, Sang-Hun;Kim, Uk-Kyu;Park, Bong-Soo;Chung, In-Kyo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.2
    • /
    • pp.95-102
    • /
    • 2002
  • DM is a systemic disease with many complications. One of them, diabetic osteopenia is important sequelae and many authors reported reduced bone mass in diabetic rats. However, in mandible, study has been rare because of its anatomical limits. So the objective of this study was to investigate bony change in mandible of diabetic rats. Thirty-two adult rats were used in this study. Half of them were male and female respectively. In sixteen rats, streptozotocin was injected intraperitoneally to induce DM and the serum glucose concentration was checked to ensure the induction of DM prior to the time of sacrifice. At 1, 2, 3, 4, 6, 8, 12, 16weeks, control group and diabetic group rats were sacrificed respectively. And then bone mineral density of mandibles and femurs of the rats was measured using dual energy X-ray absorptiometry(DEXA). In addition serum osteocalcin and urine deoxypyridinoline were measured as markers of bone formation and resoption respectively. Mandibular and femoral bone density in streptozotocin induced rats was decreased with significance statistically after 4 weeks from injection. In mandible, comparing with femur, bone density was moderately decreased. The alveolar bone in mandible was more decreased bone density than the whole body in the mandible From these results, bone mineral density decreased in uncontrolled diabetic group with time, and especially alveolar bone was more destructive in the mandible. So authors think that consideration of reduced bone mineral density is necessary in dental procedure.

A Zinc Porphyrin Sensitizer Modified with Donor and Acceptor Groups for Dye-Sensitized Solar Cells

  • Lee, Seewoo;Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3052-3058
    • /
    • 2014
  • In this article, we have designed and synthesized a novel donor-${\pi}$-acceptor (D-${\pi}$-A) type porphyrin-based sensitizer (denoted UI-5), in which a carboxyl anchoring group and a 9,9-dimethyl fluorene were introduced at the meso-positions of porphyrin ring via phenylethynyl and ethynyl bridging units, respectively. Long alkoxy chains in ortho-positions of the phenyls were supposed to reduce the degree of dye aggregation, which tends to affect electron injection yield in a photovoltaic cell. The cyclic voltammetry was employed to determine the band gap of UI-5 to be 1.41 eV based on the HOMO and LUMO energy levels, which were estimated by the onset oxidation and reduction potentials. The incident monochromatic photon-to-current conversion efficiency of the UI-5 DSSC assembled with double-layer (20 nm-sized $TiO_2$/400 nm-sized $TiO_2$) film electrodes appeared lower upon overall ranges of the excitation wavelengths, but exhibited a higher value over the NIR ranges (${\lambda}$ = 650-700 nm) compared to the common reference sensitizer N719. The UI-5-sensitized cell yielded a relatively poor device performance with an overall conversion efficiency of 0.74% with a short circuit photocurrent density of $3.05mA/cm^2$, an open circuit voltage of 0.54 mV and a fill factor of 0.44 under the standard global air mass (AM 1.5) solar conditions. However, our report about the synthesis and the photovoltaic characteristics of a porphyrin-based sensitizer in a D-${\pi}$-A structure demonstrated a significant complex relationship between the sensitizer structure and the cell performance.

Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.494-500
    • /
    • 2014
  • Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, and $600^{\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.

The effect of green tea on ultraviolet B-induced sunburn cell production in the skin of hairless mouse (자외선 B 조사 hairless 마우스에서 일광화상세포 발생 억제에 대한 녹차의 효과)

  • Kim, Sung-ho;Kim, Se-ra;Lee, Hae-june;Lee, Jin-hee;Kim, Yu-jin;Kim, Jong-choon;Jang, Jong-sik;Jo, Sung-kee
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • In this study we assessed the influences of ultraviolet (UV) light B radiation on epidermal cells by apoptotic sunburn cell (SBC) and the effect of green tea treatment on the inhibition of SBC formation in SKH1-hr mouse. The extent of changes following $200mJ/cm^2$ (0.5 mW/sec) was studied at 0, 3, 6, 12, 18, 24, 30 or 36 hours after exposure. SBCs were recognized by 3 hours after irradiation. There was tendency to increase from 3 hours to 24 hours and decrease from then to 36 hours after irradiation. The mice that received 0, 25, 50, 100, 200, 400 or $800mJ/cm^2$ of UVB were examined 24 hours after irradiation. The SBCs were induced as the radiation dose increases from 0 to $200mJ/cm^2$. A further increase of radiation dose has little further effect. The frequency of UVB ($200mJ/cm^2$)-induced SBC formation was reduced by intraperitoneal injection of green tea extract (p<0.01).

Characteristics of the Atomization in Counter-Swirl Internal Mixing Atomizer

  • Lee, Sam-Goo;Kim, Kyu-Chul;Park, Byung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.27-27
    • /
    • 1999
  • To illustrate the global variation of the droplet mean diameters and the turbulent flow characteristics in counterflowing internal mixing pneumatic nozzle, the experimental measurements at five axial downstream locations(i.e., at Z=30, 50, 80, 120, and 170mm) were made using a PDPA(Phase Doppler Particle Analyzer) under the different air injection pressures ranging from 40 ㎪ to 120 ㎪. A nozzle with axi-symmetric tangential-drilled four holes at an angle of 15$^{\circ}$ has been designed and manufactured. The distributions of velocities, turbulence intensities, turbulence kinetic energy, turbulent correlation coefficients, spray angle, droplet mean diameters, volume flux, number density are quantitatively analyzed. It is possible to discern the effects of increasing air pressure. It indicates that the strong axial momentum in spite of more or less disparity between the velocity components means more reluctant to disperse radially, and that axial fluctuating velocities are substantially higher than those of radial and tangential ones, suggesting that the disintegration process is enhanced under higher air assist. The larger droplets are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup at farther axial locations are attributed to the internal mixing type nozzle characteristics. Despite of the strong axial momentum, the poor atomization around the centre close to the nozzle exit is attributed to the lower rates of spherical particles which are not subject to instantaneous breakup. As it goes downstream, however, substantial increases in SMD(Sauter Mean Diameter) from the central part toward spray periphery are understandable because the droplet relative velocity is too low to bring about any subsequent disintegration.

  • PDF

Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode (은 나노입자 전극과 패러데이 모트를 이용한 미세유체 피코리터 주입기의 전압효율 상승)

  • Noh, Young Moo;Jin, Si Hyung;Jeong, Seong-Geun;Kim, Nam Young;Rho, Changhyun;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.472-477
    • /
    • 2015
  • This study presents modified microfluidic picoinjector combined Faraday moat with silver nanoparticle electrode to increase electrical efficiency and fabrication yield. We perform simple dropping procedure of silver nanoparticles near the picoinjection channel, which solve complicate fabrication process of electrode deposition onto the microfluidic picoinjector. Based on this approach, the microfluidic picoinjector can be reliably operated at 180 V while conventional Faraday moat usually have performed above 260 V. Thus, we can reduce the operation voltage and increase safety. Furthermore, the microfluidic picoinjector is able to precisely control injection volume from 7.5 pL to 27.5 pL. We believe that the microfluidic picoinjector will be useful platform for microchemical reaction, biological assay, drug screening, cell culture device, and toxicology.