• Title/Summary/Keyword: Energy homeostasis

Search Result 146, Processing Time 0.028 seconds

Growing pigs developed different types of diabetes induced by streptozotocin depending on their transcription factor 7-like 2 gene polymorphisms

  • Tu, Ching-Fu;Hsu, Chi-Yun;Lee, Meng-Hwan;Jiang, Bo-Hui;Guo, Shyh-Forng;Lin, Chai-Ching;Yang, Tien-Shuh
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • The different polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene promote variances in diabetes susceptibility in humans. We investigated whether these genotypes also promote differences in diabetic susceptibility in commercial pigs. Growing pigs (Landrace, both sex, 50-60 kg) with the C/C (n=4) and T/T (n=5) TCF7L2 genotypes were identified and intravenously injected with streptozotocin (STZ, 40 mg/kg) twice in weekly intervals, then a high-energy diet was offered. Oral glucose tolerance tests, blood analyses and the homeostasis model assessment-insulin resistance (HOMA-IR) index calculations were performed. The animals were sacrificed at the end of 12 weeks of treatment to reveal the pancreas histomorphometry. The results showed that all of the treated pigs grew normally despite exhibiting hyperglycemia at two weeks after the induction. The glycemic level of the fasting or postprandial pigs gradually returned to normal. The fasting insulin concentration was significantly decreased for the T/T carriers but not for the C/C carriers, and the resulting HOMA-IR index was significantly increased for the C/C genotype, indicating that the models of insulin dependence and resistance were respectively developed by T/T and C/C carriers. The histopathological results illustrated a significant reduction in the pancreas mass and insulin active sites, which suggested increased damage. The results obtained here could not be compared with previous studies because the TCF7L2 background has not been reported. Growing pigs may be an excellent model for diabetic in children if the animals are genetically pre-selected.

Protective Effect of Phragmitis Rhizoma against Oxidative Stress-induced DNA Damage and Apoptosis in Chang Liver Cells (산화적 스트레스에 의한 간세포의 DNA 손상 및 apoptosis 유도에 대한 노근 추출물의 보호 효과)

  • Lee, Hui yeong;Hong, Sang hoon;Park, Sang eun
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.6
    • /
    • pp.1269-1284
    • /
    • 2021
  • Objectives: Phragmitis Rhizoma is the fresh or dried rhizome of Phragmites communis Trin., which has been prescribed in traditional Korean medicine to relieve fever and vomiting and to nourish the body fluids. Recently, the protective effect of Phragmitis Rhizoma extract or its components on myelotoxicity and inflammatory responses have been reported, but no study has yet been conducted on oxidative stress. Methods: The present study investigated whether an ethanol extract of Phragmitis Rhizoma (PR) could protect against cellular damage induced by oxidative stress in Chang liver cells. Results: Pretreatment with PR significantly suppressed the hydrogen peroxide (H2O2)-induced reduction of Chang cell viability and generation of reactive oxygen species (ROS), thereby deferring apoptosis. PR also markedly inhibited H2O2-induced comet tail formation and phospho-γH2AX expression, suggesting that PR protected against oxidative stress-mediated DNA damage. PR also effectively prevented the inhibition of ATP synthesis in H2O2-treated Chang cells by inhibiting the loss of mitochondrial membrane potential, indicating that PR maintains energy metabolism through preservation of mitochondrial function while eliminating ROS generated by H2O2. Immunoblotting results indicated that PR attenuated the H2O2-induced downregulation of Bcl-2 and upregulation of Bax expression. Conclusions: PR protects against oxidative injury in Chang liver cells by regulating energy homeostasis via ROS generation blockade, which is at least partly mediated through inactivation of the mitochondria-mediated apoptosis pathway.

The Cross-talk Mechanisms of Constitutive Androstane Receptor (CAR) in the Regulation of its Activity, Energy Metabolism, Cellular Proliferation and Apoptosis (Constitutive Androstane Receptor (CAR)의 활성, 에너지 대사 및 세포의 증식과 사멸의 조절에 대한 CAR의 cross-talk 기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.211-220
    • /
    • 2020
  • The activity of CAR can be regulated not only by ligand binding but also by phosphorylation of regulatory factors involved in extracellular signaling pathways, cross-talk interactions with transcription factors, and the recruitment, degradation, and expression of coactivators and corepressors. This regulation of CAR activity can in turn have effects on the control of diverse physiological homeostasis, including xenobiotic and energy metabolism, cellular proliferation, and apoptosis. CAR is phosphorylated by the ERK1/2 signaling pathway, which causes formation of a complex with Hsp-90 and CCRP, leading to its cytoplasmic retention, whereas phenobarbital inhibits ERK1/2, which causes dephosphorylation of the downstream signaling molecules, leading to the recruitment to CAR of the activated RACK-1/PP2A components for the dephosphorylation, nuclear translocation, and the transcriptional activation of CAR. Activated CAR cross-talks with FoxO1 to induce inhibition of its transcriptional activity and with PGC-1α to induce protein degradation by ubiquitination, resulting in the transcriptional suppression of PEPCK and G6Pase involved in gluconeogenesis. Regulation by CAR of lipid synthesis and oxidation is achieved by its functional cross-talks, respectively, with PPARγ through the degradation of PGC-1α to inhibit expression of the lipogenic genes and with PPARα through either the suppression of CPT-1 expression or the interaction with PGC-1α each to induce tissue-specific inhibition or stimulation of β-oxidation. Whereas CAR stimulates cellular proliferation by suppressing p21 expression through the inhibition of FoxO1 transcriptional activity and inducing cyclin D1 expression, it suppresses apoptosis by inhibiting the activities of MKK7 and JNK-1 through the expression of GADD45B. In conclusion, CAR is involved in the maintenance of homeostasis by regulating not only xenobiotic metabolism but also energy metabolism, cellular proliferation, and apoptosis through diverse cross-talk interactions with extracellular signaling pathways and intracellular regulatory factors.

Ebb-and-Flow of Macroautophagy and Chaperone-Mediated Autophagy in Raji Cells Induced by Starvation and Arsenic Trioxide

  • Li, Cai-Li;Wei, Hu-Lai;Chen, Jing;Wang, Bei;Xie, Bei;Fan, Lin-Lan;Li, Lin-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5715-5719
    • /
    • 2014
  • Autophagy is crucial in the maintenance of homeostasis and regenerated energy of mammalian cells. Macroautophagy and chaperone-mediated autophagy(CMA) are the two best-identified pathways. Recent research has found that in normal cells, decline of macroautophagy is appropriately parallel with activation of CMA. However, whether it is also true in cancer cells has been poorly studied. Here we focused on cross-talk and conversion between macroautophagy and CMA in cultured Burkitt lymphoma Raji cells when facing serum deprivation and exposure to a toxic compound, arsenic trioxide. The results showed that both macroautophagy and CMA were activated sequentially instead of simultaneously in starvation-induced Raji cells, and macroautophagy was quickly activated and peaked during the first hours of nutrition deprivation, and then gradually decreased to near baseline. With nutrient deprivation persisted, CMA progressively increased along with the decline of macroautophagy. On the other hand, in arsenic trioxide-treated Raji cells, macroautophagy activity was also significantly increased, but CMA activity was not rapidly enhanced until macroautophagy was inhibited by 3-methyladenine, an inhibitor. Together, we conclude that cancer cells exhibit differential responses to diverse stressor-induced damage by autophagy. The sequential switch of the first-aider macroautophagy to the homeostasis-stabilizer CMA, whether active or passive, might be conducive to the adaption of cancer cells to miscellaneous intracellular or extracellular stressors. These findings must be helpful to understand the characteristics, compensatory mechanisms and answer modes of different autophagic pathways in cancer cells, which might be very important and promising to the development of potential targeting interventions for cancer therapies via regulation of autophagic pathways.

Metabolic Signaling by Adipose Tissue Hormones in Obesity (비만에서 adipose tissue 호르몬에 의한 metabolic signaling)

  • Younghoon Jang
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.287-294
    • /
    • 2023
  • Healthy adipose tissue is critical for preventing obesity by maintaining metabolic homeostasis. Adipose tissue plays an important role in energy homeostasis through glucose and lipid metabolism. Depending on nutritional status, adipose tissue expands to store lipids or can be consumed by lipolysis. The role of adipose tissue as an endocrine organ is emerging, and many studies have reported that there are various adipose tissue hormones that communicate with other organs and tissues through metabolic signaling. For example, leptin, a representative peptide hormone secreted from adipose tissues (adipokine), circulates and targets the central nervous system of the brain for appetite regression. Furthermore, adipocytes secrete inflammatory cytokines to target immune cells in adipose tissues. Not surprisingly, adipocytes can secrete fatty acid-derived hormones (lipokine) that bind to their specific receptors for paracrine and endocrine action. To understand organ crosstalk by adipose tissue hor- mones, specific metabolic signaling in adipocytes and other communicating cells should be defined. The dysfunction of metabolic signaling in adipocytes occurs in unhealthy adipose tissue in overweight and obese conditions. Therapy targeting novel adipose metabolic signaling could potentially lead to the development of an effective anti-obesity drug. This review summarizes the latest updates on adipose tissue hormone and metabolic signaling in terms of obesity and metabolic diseases.

The interaction of Apolipoprotein A5 gene promoter region T-1131C polymorphism (rs12286037) and lifestyle modification on plasma triglyceride levels in Japanese

  • Yamasaki, Masayuki;Mutombo, Paulin Beya wa Bitadi;Iwamoto, Mamiko;Nogi, Akiko;Hashimoto, Michio;Nabika, Toru;Shiwaku, Kuninori
    • Nutrition Research and Practice
    • /
    • v.9 no.4
    • /
    • pp.379-384
    • /
    • 2015
  • BACKGROUND/OBJECTIVE: Apolipoprotein A5 gene promoter region T-1131C polymorphism (APOA5 T-1131C) is known to be associated with elevated plasma TG levels, although little is known of the influence of the interaction between APOA5 T-1131C and lifestyle modification on TG levels. To investigate this matter, we studied APOA5 T-1131C and plasma TG levels of subjects participating in a three-month lifestyle modification program. SUBJECTS/METHODS: A three-month lifestyle modification program was conducted with 297 participants (Age: $57{\pm}8years$) in Izumo City, Japan, from 2001-2007. Changes in energy balance (the difference between energy intake and energy expenditure) and BMI were used to evaluate the participants' responses to the lifestyle modification. RESULTS: Even after adjusting for confounding factors, plasma TG levels were significantly different at baseline among three genotype subgroups: TT, $126{\pm}68mg/dl$; TC, $134{\pm}74mg/dl$; and CC, $172{\pm}101mg/dl$. Lifestyle modification resulted in significant reductions in plasma TG levels in the TT, TC, and CC genotype subgroups: $-21.9{\pm}61.0mg/dl$, $-20.9{\pm}51.0mg/dl$, and $-42.6{\pm}78.5mg/dl$, respectively, with no significant differences between them. In a stepwise regression analysis, age, APOA5 T-1131C, body mass index (BMI), homeostasis model assessment-insulin resistance (HOMA-IR), and the 18:1/18:0 ratio showed independent association with plasma TG levels at baseline. In a general linear model analysis, APOA5 T-1131C C-allele carriers showed significantly greater TG reduction with decreased energy balance than wild type carriers after adjustment for age, gender, and baseline plasma TG levels. CONCLUSIONS: The genetic effects of APOA5 T-1131C independently affected plasma TG levels. However, lifestyle modification was effective in significantly reducing plasma TG levels despite the APOA5 T-1131C genotype background.

Insulin Inhibits the Expression of Adiponectin and AdipoR2 mRNA in Cultured Bovine Adipocytes

  • Sun, Y.G.;Zan, L.S.;Wang, H.B.;Guo, H.F.;Yang, D.P.;Zhao, X.L.;Gui, L.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.10
    • /
    • pp.1429-1436
    • /
    • 2009
  • Adiponectin is an adipocyte-derived protein that has a regulatory role in energy homeostasis and influences insulin sensitivity. Its effects on glucose utilization and lipid metabolism are mediated by AdipoR1 and AdipoR2. How insulin affects adiponectin gene expression and secretion is still controversial. This study was conducted to determine the expression of adiponectin, AdipRs and $PPAR-\gamma$ during the differentiation of bovine preadipocytes and the effect of insulin on expression of these genes in bovine adipocytes. The bovine preadipocytes started to accumulate lipids three days after differentiation was induced, with increased expression of adiponectin, AdipoR2 and $PPAR-\gamma$ mRNAs. Insulin decreased the expression of adiponectin mRNA in a dose- and time-dependent fashion, and the inhibition was detectable at insulin concentrations as low as 10 nM and as early as 2 h after addition of 100 nM insulin. Insulin also inhibited the expression of AdipoR2 mRNA at concentrations from 1 to 1,000 nM or 24 h after addition of 100 nM insulin, but did not affect the expression of AdipoR1 in bovine adipocytes. Inhibition of PI3K with LY294002 reversed the inhibition of adiponectin and AdipoR2 mRNA expression by insulin. These results suggest that insulin suppresses the expression of adiponectin and AdipoR2 at least partially via the PI3K signal pathway.

The Regulation of Chemerin and CMKLR1 Genes Expression by TNF-α, Adiponectin, and Chemerin Analog in Bovine Differentiated Adipocytes

  • Suzuki, Y.;Hong, Y.H.;Song, S.H.;Ardiyanti, A.;Kato, D.;So, K.H.;Katoh, K.;Roh, Sang-Gun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1316-1321
    • /
    • 2012
  • Adipokines, adipocyte-derived protein, have important roles in various kinds of physiology including energy homeostasis. Chemerin, one of adipocyte-derived adipokines, is highly expressed in differentiated adipocytes and is known to induce macrophage chemotaxis and glucose intolerance. The objective of the present study was to investigate the changes of chemerin and the chemokine-like-receptor 1 (CMKLR1) gene expression levels during differentiation of the bovine adipocyte and in differentiated adipocytes treated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), adiponectin, leptin, and chemerin (peptide analog). The expression levels of the chemerin gene increased at d 6 and 12 of the differentiation period accompanied by increased cytoplasm lipid droplets. From d 6 onward, peroxisome proliferator-activated receptor-${\gamma}2$ (PPAR-${\gamma}2$) gene expression levels were significantly higher than that of d 0 and 3. In contrast, CMKLR1 expression levels decreased at the end of the differentiation period. In fully differentiated adipocytes (i.e. at d 12), the treatment of TNF-${\alpha}$ and adiponectin upregulated both chemerin and CMKLR1 gene expression levels, although leptin did not show such effects. Moreover, chemerin analog treatment was shown to upregulate chemerin gene expression levels regardless of doses. These results suggest that the expression of chemerin in bovine adipocyte might be regulated by chemerin itself and other adipokines, which indicates its possible role in modulating the adipokine secretions in adipose tissues.

Effects of Variants in Proopiomelanocortin and Neuropeptide Y Genes on Growth, Carcass, and Meat Quality Traits in Rabbits

  • Liu, Wen-Chao;Chen, Shi-Yi;Jia, Xian-Bo;Wang, Jie;Lai, Song-Jia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.609-615
    • /
    • 2014
  • Appetite-related neuropeptides proopiomelanocortin (POMC) and Neuropeptide Y (NPY) are essential for regulating feeding behavior and energy homeostasis. The objective of this study was to evaluate the effects of variants in POMC and NPY genes on growth, carcass and meat quality traits in rabbits. A total of six SNPs were identified for POMC (n = 2) and NPY (n = 4) genes by direct sequencing. Three SNPs were subsequently genotyped by using MassArray system (Sequenom iPLEXassay) in 235 individuals, which belong to three meat rabbit breeds, including 93 Ira rabbits; 81 Champagne rabbits and 61 Tianfu black rabbits. The SNP c.112-12G>T was in intron-exon boundaries (intron 1) of POMC gene, and the association analysis showed that individuals with TT genotype had a greater 84 d body weight (BW84), eviscerated weight and semi-eviscerated weight than those with GT genotype (p<0.05); the TT individuals were also higher than those GG in the ripe meat ratio (RMR) (p<0.05). The g.1778G>C SNP, which was in complete linkage with other three SNPs (g.1491G>A, g.1525G>T and g.1530C>T) in intron 1 of NPY gene, was significantly correlated with eviscerated slaughter percentage and semi-eviscerated slaughter percentage in rabbits, and the individuals with CC genotype had a better performance than CG genotype (p<0.05). These findings would provide primary clues for the biological roles of POMC and NPY underlying the rabbit growth-related traits.

Identification and Association of SNPs in TBC1D1 Gene with Growth Traits in Two Rabbit Breeds

  • Yang, Zhi-Juan;Fu, Lu;Zhang, Gong-Wei;Yang, Yu;Chen, Shi-Yi;Wang, Jie;Lai, Song-Jia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1529-1535
    • /
    • 2013
  • The TBC1D1 plays a key role in body energy homeostasis by regulating the insulin-stimulated glucose uptake in skeletal muscle. The present study aimed to identify the association between genetic polymorphisms of TBC1D1 and body weight (BW) in rabbits. Among the total of 12 SNPs detected in all 20 exons, only one SNP was non-synonymous (c.214G>A. p.G72R) located in exon 1. c.214G>A was subsequently genotyped among 491 individuals from two rabbit breeds by the high-resolution melting method. Allele A was the predominant allele with frequencies of 0.7780 and 0.6678 in European white rabbit (EWR, n = 205) and New Zealand White rabbit (NZW, n = 286), respectively. The moderate polymorphism information content (0.250.05). Our results implied that the c.214G>A of TBC1D1 gene might be one of the candidate loci affecting the trait of 35 d BW in the rabbit.