• Title/Summary/Keyword: Energy harvesting system

Search Result 305, Processing Time 0.025 seconds

Performance of Battery-less Backscatter Sensor Networks Based on Good Channel Sensing (채널 센싱 기반의 무전원 백스케터 센서 네트워크의 성능)

  • Hong, Seung Gwan;Sim, Isaac;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • In this paper, we studied a spectrum sensing algorithm for the efficient use of available spectrum in RF energy harvesting system combined with backscatter communication. We first looked for white spaces and then, selected low fading channel among white spaces using spectrum sensing algorithm at a transmitter. The transmitter employing the algorithm alleviates signal interference and improves the received signal strength indication through signals transmitted by low fading channel. The proposed RF energy harvesting system combined with backscatter communication is used the transmitter employing the algorithm. As a result of computer simulations, we can find the performance improvements of RF energy harvesting, BER of backscatter communication, and the received signal strength per distance of backscatter tag.

Energy Harvesting System according to Moisture Absorption of Textile and Efficient Coating Method as a Carbon Black (섬유 고분자의 수분 흡수에 따른 에너지 하베스팅 발전 소자 및 이를 위한 카본 블랙의 효율적인 코팅법)

  • Choi, Seungjin;Chae, Juwon;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.280-287
    • /
    • 2021
  • Generating electricity by using water in many energy harvesting system is due to their simplicity, sustainability and eco-friendliness. Evaporation-driven moist-electric generators (EMEGs) are an emergent technology and show great potential for harvesting clean energy. In this study, we report a transpiration driven electro kinetic power generator (TEPG) that utilize capillary flow of water in an asymmetrically wetted cotton fabric coated with carbon black. When water droplets encounter this textile EMEG, the water flows spontaneously under capillary action without requiring an external power supply. First carbon black sonicated and dispersed well in three different solvent system such as dimethylformamide (DMF), sodiumdedecylbenzenesulfonate (SDBS-anionic surfactant) and cetyltrimethylammoniumbromide (CTAB-cationic surfactant). A knitted cotton/PET fabric was coated with carbon black by conventional pad method. Cotton/PET fabrics were immersed and stuttered well in these three different systems and then transferred to an autoclave at 120 ℃ for 15 minutes. Cotton/PET fabric treated with carbon black dispersed in DMF solvent generated maximum current up to 5 µA on a small piece of sample (2 µL/min of water can induce constant electric output for more than 286 hours). This study is high value for designing of electric generator to harvest clean energy constantly.

A Study on the Development of Green Road System for Heat Energy Harvesting (녹색도로의 열 에너지 하베스팅을 위한 시스템 개발에 관한 연구)

  • Jo, Byung-Wan;Lee, Duk-Hee;Lee, Dong-Yoon;Lee, Chang-Sub
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • According to adverse effects of ecosystems due to a bulk of fossil fuel consumption, utilization of sustainable and renewable energy is required. In this paper, converting the energy crisis into an opportunity of new growth is expected by converting heat energy in asphalt pavement into electric power using thermoelectric effect. For this, experiments of inserting heat collector pipe and thermoelectric element into asphalt were performed, and the electric power of heat energy harvesting was measured for development of efficient harvesting system of heat energy. As the results of experiments, electric conversion of average 19.86W per day is possible at $1m^2$ conversion area at a depth of 5cm, and possibility of this system was confirmed. Consequently, a systematic "Green Road" using sustainable heat energy source in asphalt pavement simultaneously with environmental maintenance and econovic growth was suggested.

Analysis of Electromotive Force Characteristics for Electromagnetic Energy Harvester using Ferrofluid

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.252-257
    • /
    • 2015
  • This paper investigates the concept and implementation of an energy harvesting device using a ferrofluid sloshing movement to generate an electromotive force (EMF). Ferrofluids are often applied to energy harvesting devices because they have both magnetic properties and fluidity, and they behave similarly to a soft ferromagnetic substance. In addition, a ferrofluid can change its shape freely and generate an EMF from small vibrations. The existing energy harvesting techniques, for example those using piezoelectric and thermoelectric devices, generate minimal electric power, as low as a few micro-watts. Through flow analysis of ferrofluids and examination of the magnetic circuit characteristics of the resultant electromagnetic system, an energy harvester model based on an electromagnetic field generated by a ferrofluid is developed and proposed. The feasibility of the proposed scheme is demonstrated and its EMF characteristics are discussed based on experimental data.

A Study on AC/DC Power Converter of Energy Harvesting for Considered to Solar Position Tracking Control (태양광 위치 추적 제어를 고려한 에너지 Harvesting AC/DC 전력 변환기 구동에 관한 연구)

  • Na, Seung-Kwon;Ku, Gi-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.56-66
    • /
    • 2014
  • In this paper, the solar cell need the characteristic interpreting because the solar cell changes greatly according to the isolation, temperature and load in the photovoltaic development. Moreover, to get many energy in photovoltaic development need the position tracking of the sun according to the environment change and it is necessary to control the output of solar cells up to the time. Simulation and composed microprocessor and sensor chip an power conversion system with boost converter to experiment results are performed to prove the analysis of the converter operation, and to show the possibility of energy harvesting and photovoltaic development need the position tracking small capacitance, the boost rate of boost converter was similar to 167 percent.

Hydrodynamic characteristics of cambered NACA0012 for flexible-wing application of a flapping-type tidal stream energy harvesting system

  • Sitorus, Patar Ebenezer;Park, JineSoon;Ko, Jin Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.225-232
    • /
    • 2019
  • In recent years, nonlinear dynamic models have been developed for flapping-type energy harvesting systems with a rigid wing, but not for those with a flexible wing. Thus, in this study, flexible wing designs of NACA0012 section are proposed and measurements of the forces of rigid cambered wings, which are used to estimate the performance of the designed wings, are conducted. Polar curves from the measured lift and drag coefficients show that JavaFoil estimation is much closer to the measured values than Eppler over the entire given range of angles of attack. As the camber of the rigid cambered wings is increased, both the lift and drag coefficients increase, in turn increasing the resultant forces. Moreover, the maximum resultant forces for all rigid cambered wings are achieved at the same angle of attack as the maximum lift coefficient, meaning that the lift coefficient is dominant in representations of the wing characteristics.

Multi-Source Based Energy Harvesting Architecture for IoT and Wearable System (IoT 및 웨어러블 시스템을 위한 멀티 소스 기반 에너지 수확 구조)

  • Park, Hyun-Moon;Kwon, Jin-San;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.225-234
    • /
    • 2019
  • By using the Triboelectric nanogenerators, known as TENG, we can take advantages of high conversion efficiency and continuous power output even with small vibrating energy sources. Nonlinear energy extraction techniques for Triboelectric vibration energy harvesting usually requires synchronized active electronic switches in most electronic interface circuits. This study presents a nonlinear energy harvesting with high energy conversion efficiency to harvest and save energies from human active motions. Moreover, the proposed design can harvest and store energy from sway motions around different directions on a horizontal plane efficiently. Finally, we conducted a comparative analysis of a multi-mode energy storage board developed by a silicon-based piezoelectricity and a transparent TENG cell. As a result, the experiment showed power generation of about 49.2mW/count from theses multi-fully harvesting source with provision of stable energy storages.

An Efficient Spectrum Sensing Technique for Wireless Energy Harvesting Systems (무선에너지하비스팅 시스템을 위한 효율적인 스펙트럼 센싱 기법)

  • Hwang, Yu Min;Shin, Yoan;Kim, Dong In;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • Spectrum sensing is a critical functionality of Cognitive Radio(CR) systems and the CR systems can be applied to RF energy harvesting systems to improve an energy harvesting rate. There are number of spectrum sensing techniques. One of techniques is energy detection. Energy detection is the simplest detection method and is the most commonly used. But, energy detection has a hidden terminal problem in real wireless communication, because of secondary user (SU) can be affected by frequency fading and shadowing. Cooperative spectrum sensing can solve this problem using spatial diversity of SUs. But it has a problem of increasing data by processing multiple secondary. So, we propose the system model using adaptive spectrum sensing algorithm and system model is simulated. This algorithm chooses sensing method between single energy sensing and cooperative energy according to the received signal's Signal to Noise Ratio (SNR) from Primary User (PU). The simulation result shows that adaptive spectrum sensing has an efficiency and improvement in CR systems.

Electrical power analysis of piezoelectric energy harvesting circuit using vortex current (와류를 이용한 압전 에너지 수확 회로의 전력 분석)

  • Park, Geon-Min;Lee, Chong-Hyun;Cho, Cheeyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.222-230
    • /
    • 2019
  • In this paper, the power of the energy harvesting circuit using the PVDF (Polyvinylidene fluoride) piezoelectric sensor transformed by vortex was analyzed. For power analysis, a general bridge diode rectifier circuit and a P-SSHI (Parallel Synchronized Switch Harvesting on Inductor) rectifier circuit with a switching circuit were used. The P-SSHI circuit is a circuit that incorporates a parallel synchronous switch circuit at the input of a general rectifier circuit to improve energy conversion efficiency. In this paper, the output power of general rectifier circuit and P-SSHI rectifier circuit is analyzed and verified through theory and experiment. It was confirmed that the efficiency was increased by 69 % through the experiment using the wind. In addition, a circuit for storing the harvested energy in the supercapacitor was implemented to confirm its applicability as a secondary battery.

Joint Resource Allocation Scheme for OFDM Wireless-Powered Cooperative Communication Networks

  • Liang, Guangjun;Zhu, Qi;Xin, Jianfang;Pan, Ziyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1357-1372
    • /
    • 2017
  • Energy harvesting techniques, particularly radio frequency energy harvesting (RF-EH) techniques, which are known to provide feasible solutions to enhance the performance of energy constrained wireless communication systems, have gained increasing attention. In this paper, we consider a wireless-powered cooperative communication network (WPCCN) for transferring energy in the downlink and forwarding signals in the uplink. The objective is to maximize the average transmission rate of the system, subject to the total network power constraint. We formulate such a problem as a form of wireless energy transmission based on resource allocation that searches for the joint subcarrier pairing and the time and power allocation, and this can be solved by using a dual approach. Simulation results show that the proposed joint optimal scheme can efficiently improve system performance with an increase in the number of subcarriers and relays.