• Title/Summary/Keyword: Energy functional

Search Result 1,624, Processing Time 0.025 seconds

Vibronic Assignments of Isomeric Trimethylbenzyl Radicals : Revisited

  • Yi, Eun Hye;Yoon, Young Wook;Lee, Sang Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.737-742
    • /
    • 2014
  • The vibronic emission spectra of isomeric trimethylbenzyl radicals were reassigned based on substituent effect on electronic transition energy as well as ab initio calculation of the benzyl radical. The electronic transition energy of three isomeric jet-cooled trimethylbenzyl radicals produced by corona discharge of 1,2,3,5-tetramethylbenzene were analyzed using the empirical data of three isomeric methylbenzyl radicals. Calculated data were obtained by summing up the shifts measured from methylbenzyl radicals as well as taking the position and alignment of substituents on the benzene ring into account. The revised assignments show better agreement with observation, and rationalize the validity of the model developed to explain the substituent effect on electronic transition energy of benzyl radicals.

Comparative studies of density functionals in modelling hydrogen bonding energetics of acrylamide dimers

  • Lin, Yi-De;Wang, Yi-Siang;Chao, Sheng D.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.369-376
    • /
    • 2017
  • Intermolecular interaction energies and conformer geometries of the hydrogen bonded acrylamide dimers have been studied by using the second-order Møller-Plesset (MP2) perturbation theory and the density functional theory (DFT) with 17 density functionals. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) have been used to study the basis set effects. The DFT calculated interaction energies are compared to the reference energy data calculated by the MP2 method and the coupled cluster method at the complete basis set (CCSD(T)/CBS) limit in order to determine the relative performance of the studied density functionals. Overall, dispersion-energy-corrected density functionals outperform uncorrected ones. The ${\omega}B97XD$ density functional is particularly effective in terms of both accuracy and computational cost in estimating the reference energy values using small basis sets and is highly recommended for similar calculations for larger systems.

Identification of a Universal Relation between a Thermodynamic Variable and Catalytic Activities of Pyrites toward Hydrogen Evolution Reaction: Density Functional Theory Calculations (수소발생반응에 대한 Pyrites 표면 촉매 성능 예측: 밀도 범함수 이론 계산)

  • Gang, Jun-Hui;Hwang, Ji-Min;Han, Byeong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.87.1-87.1
    • /
    • 2017
  • High functional catalyst to efficiently produce clean and earth-abundant renewable fuels plays a key role in securing energy sustainability and environmental protection of our society. Hydrogen has been considered as one of the most promising energy carrier as represented by focused research works on developing catalysts for the hydrogen evolution reaction (HER) from the water hydrolysis over the last several decades. So far, however, the major catalysts are expensive transition metals. Here using first principles density functional theory (DFT) calculations we screen various pyrites for HER by identifying fundamental descriptor governing the catalytic activity. We enable to capture a strong linearity between experimentally measured exchange current density in HER and calculated adsorption energy of hydrogen atom in the pyrites. The correlation implies that there is an underlying design principle tuning the catalytic activity of HER.

  • PDF

Formation of $YBa_2Cu_3O_x$ and the microstructure of melt infiltration processed YBCO superconductors

  • Kim, C.J.;Lee, D.M.;Park, H.S.;Jee, Y.A.;Hong, G.W.
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2000
  • A YBCO superconductor was prepared in a short time by a melt infiltration process that utilizes meting of $Ba_3Cu5O_8$ powder and the infiltration into a porous $Y_2BaCuO_5$ compact. The processing parameters such as a reaction temperature and time, and atmosphere (air and $O_2$) were controlled to establish the fabrication condition. The formation of a $YBa_2Cu_3O_x$, phase and the developed microstructure are reported.

  • PDF

Development of Cube Texture in a Silver-Nickel Bi-layer Sheet

  • Lee, Hee-Gyoun;Jung, Yang-Hong;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.47-50
    • /
    • 1999
  • An Ag/Ni bi-layer sheet was fabricated by the combination of powder metallurgy, diffusion bonding, cold rolling and texture annealing processes. After heat treating the cold rolled thin Ag/Ni bi-layer sheet at $900^{\circ}C$ for 4h, the excellent cube texture was developed on nickel surface. Qualitative chemical analysis using EPMA showed that inter diffusions of Ni and Ag in Ag/Ni bi-layer composite were negligible. It showed that Ag can be used as a chemical barrier for Ni and vice versa.

  • PDF

Evolution of Cube Texture in the Nickel-Silver-Stainless steel Multi-layer Sheet

  • Lee, Hee-Gyoun;Jung, Yang-Hong;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1999
  • A Ni/Ag/Stainless steel 310S(SS310S) multi-layer sheet has been fabricated by a combination of vacuum brazing, cold rolling and texture annealing processes. After heat-treating the thin Ni/Ag/SS310S multi-layer sheet at $900^{\circ}C$ for 2h, development of (100)<001>cube texture on Ni surface was revealed by (111) pole figure. Quantitative chemical analysis was made by EPMA for the cross-section of the Ni/Ag/SS310S multi-layer sheet. EPMA results showed that Ag diffusion into the Ni layer, which may suppress the cube texture development, was negligible. A small amount of Cr atoms were detected in the Ni layer. It showed that Ag can be used as a chemical barrier of alloying element atoms in Ni layer for the Ni/Ag/SS310S multi-layer sheet and a strong cube texture was developed for the Ni layer in the Ni/Ag/SS310S multi-layer sheet.

  • PDF

Fabrication of NiO buffer film on textured Ni substrate for YBCO coated conductor (Textured Ni 기판 위에 YBCO coated conductor 모재용 NiO 완충층 제조)

  • Sun, Jong-Won;Kim, Hyoung-Seop;Jung, Choon-Ghwan;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.125-129
    • /
    • 2001
  • NiO buffer layers were deposited on texture Ni tapes fur YBCO coated conductors by MOCVD(metal organic chemical vapor deposition) method, using a single solution source. Variables were deposition temperature and flow rate of $0_2$carrier gas. At higher temperatures, The NiO(111) texture was well developed, but the NiO(200) texture was developed at low temperatures. The best result was obtained at the deposition temperature of$ 470^{\circ}C$ and the gas flow rate of 200 sccm. FWHM value of $\omega$-scan fur NiO(200) of the film and $\Phi$-scan for NiO(111) of the film was $4.2^{\circ}$ and $7^{\circ}$, respectively.

  • PDF

Effects of permeation test conditions on $CO_2$/$N_2$ separations of NaY zeolite membranes

  • Cho, Churl-hee;Ahn, Young-soo;Han, Moon-hee;Hyun, Sang-hoon
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.105-108
    • /
    • 2004
  • Since Kyoto protocol in 1997, carbon dioxide recovery using membranes has been attended due to its potential applications to recover high purity carbon dioxide with low processing cost. Because carbon dioxide membrane should operate in chemically and thermally severe conditions and requires high permeance, an inorganic membrane is more favorable than a polymeric membrane.(omitted)

  • PDF

EXISTENCE OF PERIODIC SOLUTIONS IN FERROELECTRIC LIQUID CRYSTALS

  • Park, Jinhae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.571-588
    • /
    • 2010
  • We introduce the Landau-de Gennes model in order to understand molecular structures in ferroelectric liquid crystals. We investigate equilibrium configurations of the governing energy functional by means of bifurcation analysis. In particular, we obtain periodic solutions of the functional, which is a signature of a rich variety of applications of ferroelectric materials.

Recent Advances in High-performance Functional Ceramics using 3D Nanostructuring Techniques (3차원 나노구조화 기술을 이용한 고성능 기능성 세라믹 연구개발 동향)

  • Ahn, Changui;Park, Junyong;Jeon, Seokwoo
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.230-242
    • /
    • 2019
  • Functional ceramics are widely utilized in a variety of application fields such as structural materials, sensors, energy devices, purification filter and etc due to their high strength, stability and chemical activity. With the breakthrough development of nanotechnology, many researchers have studied new types of nanomaterials including nanoparticle, nanorod, nanowire and nanoplate to realize high-performance ceramics. Especially several groups have focused on the 3D nanostructured ceramics because of their large surface area, efficient load transfer, ultra-fast ion diffusion and superior electrical (or thermal) conductivity. In this review, we introduce the reported fabrication strategies of the 3D nanostructured and functional ceramics, also summarized the 3D nanostructured ceramic based high-performance applications containing photocatalysts, structural materials, energy harvesting and storage devices.