• Title/Summary/Keyword: Energy fluxes

Search Result 252, Processing Time 0.025 seconds

Estimate of Heat Flux in the East China Sea (동지나해의 열속추정에 관한 연구)

  • KIM Young-Seup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.84-91
    • /
    • 1996
  • Heat flux of the East China Sea was estimated with the bulk method, the East China mount based on the marine meteorological data and cloud amount data observed by a satellite. Solar radiation is maximum in May and minimum in December. Its amount decreases gradually southward during the winter half year (from October to March), and increases northward during the summer half year (from April to September) due to the influence of Changma (Baiu) front. The spatial difference of long-wave radiation is relatively small, but its temporal difference is quite large, i.e., the value in February is about two times greater than that in July. The spatial patterns of sensible and latent heat fluxes reflect well the effect of current distribution in this region. The heat loss from the ocean surface is more than $830Wm^{-2}$ in winter, which is five times greater than the net radiation amount during the same period, The annual net heat flux is negative, which means heat loss from the sea surface, in the whole region over the East China Sea. The region with the largest loss of more than $400Wm^{-2}$ in January is observed over the southwestern Kyushu. The annual mean value of solar radiation, long-wave radiation, sensible and latent heat fluxes are estimated $187Wm^{-2},\;-52Wm^{-2},\;-30Wm^{-2}\;and\;-137Wm^{-2}$, respectively, consequently the East China Sea losses the energy of $32Wm^{-2}(2.48\times10^{13}W)$. Through the heat exchange between the air and the sea, the heat energy of $0.4\times10^{13}W$ is supplied from the air to the sea in A region (the Yellow Sea), $2.1\times10^{13}W$ in B region (the East China Sea) and $1.7\times10^{13}W$ in C region (the Kuroshio part), respectively.

  • PDF

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.

Performance Improvement of Computing Time of 2 Dimensional Finite Volume Model using MPI (MPI를 이용한 2차원 유한체적모형의 계산 성능 개선)

  • Kim, Tae Hyung;Han, Kun Yeun;Kim, Byung Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.7
    • /
    • pp.599-614
    • /
    • 2014
  • In this study, two dimensional finite volume model was parallelized to improve computing time, which has been developed to be able to apply for the mixed meshes of triangle and quadrilateral. MPI scheme which is free from limitation of the number of cores was applied, and non-blocking point-to-point communication was used for fluxes and time steps calculation domain. The developed model is applied to analyze dam break in a L-shaped experimental channel with $90^{\circ}$ bend and Malpasset dam breach event to calibrate the consistency between parallelized model and existing model and examine the speed-up and efficiency of computing time. Computational speed-up about the size of the input data was considered by simulating 4 cases classified by the number of meshes, Consequently, the simulation results reached a satisfactory accuracy compared to measured data and the results from existing model, and achieved more than 3 times benefit of computational speed-up against computing time of existing model. Simulation results of 3 cases classified by the size of input data lead us to the conclusion that it is important to use proper size of input data and the number of process in order to minimize the communication overhead.

Photochemical Response Analysis on Drought Stress for Red Pepper (Capsiumannuum L.)

  • Yoo, Sung-Yung;Lee, Yong-Ho;Park, So-Hyun;Choi, Kyong-Mi;Park, June-Young;Kim, A-Ram;Hwang, Su-Min;Lee, Min-Ju;Ko, Tae-Seok;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.659-664
    • /
    • 2013
  • The aim of this study is to determine the drought stress index through photochemical analysis in red pepper (Capsiumannuum L.). The photochemical interpretation was performed in the basis of the relation between Kautsky effect and Photosystem II (PSII) following the measurement of chlorophyll, pheophytin contents, and $CO_2$ assimilation in drought stressed 5-week-old red pepper plants. The $CO_2$ assimilation rate was severely lowered with almost 77% reduction of chlorophyll and pheophytin contents at four days after non-irrigation. It was clearly observed that the chlorophyll fluorescence intensity rose from a minimum level (the O level), in less than one second, to a maximum level (the P-level) via two intermediate steps labeled J and I (OJIP process). Drought factor index (DFI) was also calculated using measured OJIP parameters. The DFI was -0.22, meaning not only the initial inhibition of PSII but also sequential inhibition of PSI. In real, most of all photochemical parameters such as quantum yield of the electron transport flux from Quinone A ($Q_A$) to Quinone B ($Q_B$), quantum yield of the electron transport flux until the PSI electron acceptors, quantum yield of the electron transport flux until the PSI electron acceptors, average absorbed photon flux per PSII reaction center, and electron transport flux until PSI acceptors per cross section were profoundly reduced except number of QA reducing reaction centers (RCs) per PSII antenna chlorophyll (RC/ABS). It was illuminated that at least 6 parameters related with quantum yield/efficiency and specific energy fluxes (per active PSII RC) could be applied to be used as the drought stress index. Furthermore, in the combination of parameters, driving forces (DF) for photochemical activity could be deduced from the performance index (PI) for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors. In conclusion, photochemical responses and their related parameters can be used as physiological DFI.

Estimation of Surface Fluxes Using Noah LSM and Assessment of the Applicability in Korean Peninsula (Noah LSM을 이용한 지표 플럭스 산정 및 한반도에서의 적용성 검토)

  • Jang, Ehsun;Moon, Heewon;Hwang, Seok Hwan;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.509-518
    • /
    • 2013
  • Understanding of the exchange between the water and energy which is happening between the surface and atmosphere is the basic of studying water resources. To study these, lots of researches using Noah Land Surface Model(LSM) are in progress. Noah LSM is based on energy and water balance equation and simulates various hydrological factors. There are diverse researches with Noah LSM are ongoing in overseas, on the other hand not enough study has been done. Especially there is almost no study using uncoupled Noah LSM in Korea. In this study we used data from Korea Flux Tower in Haenam(HFK) and Gwangneung(GDK) as forcing data to simulate the model and compared its result of net radiation, sensible heat flux and latent heat flux with the observation data to assess the applicability of Noah LSM in Korea. Regression coefficients of the comparison results of Noah LSM and observation show good agreement with the value of 0.83~0.99 at Haenam and 0.64~0.99 at Gwangneung which means Noah LSM can be trusted.

Measurement of Convective Heat Transfer Coefficients of Horizontal Thermal Screens under Natural Conditions (온실 스크린의 대류열전달계수 측정)

  • Rafiq, Adeel;Na, Wook Ho;Rasheed, Adnan;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.9-19
    • /
    • 2020
  • Convective heat transfer is the main component of greenhouse energy loss because the energy loss by this mechanism is greater than those of the other two components (radiative and conductive). Previous studies have examined the convective heat transfer coefficients under natural conditions, but they are not applicable to symmetric thermal screens with zero porosity, and such screens are largely produced and used in Korea. However, the properties of these materials have not been reported in the literature, which causes selectivity issues for users. Therefore, in this study, three screens having similar color and zero porosity were selected, and a mathematical procedure based on radiation balance equations was developed to determine their convective heat transfer coefficients. To conduct the experiment, a hollow wooden structure was built and the thermal screen was tacked over this frame; the theoretical model was applied underneath and over the screen. Input parameters included three components: 1) solar and thermal fluxes; 2) temperature of the screen, black cloth, and ambient air; and 3) wind velocity. The convective heat transfer coefficients were determined as functions of the air-screen temperature difference under open-air environmental conditions. It was observed from the outcomes that the heat transfer coefficients decreased with the increase of the air-screen temperature difference provided that the wind velocity was nearly zero.

Net Portal Fluxes of Nitrogen Metabolites in Holstein Steers Fed Diets Containing Different Dietary Ratios of Whole-crop Corn Silage and Alfalfa Hay

  • EL-Sabagh, M.;Imoto, S.;Yukizane, K.;Yokotani, A.;Sugino, T.;Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.371-377
    • /
    • 2009
  • The objectives of the present study were to investigate the effects of different dietary ratios of whole-crop corn silage and alfalfa hay on nitrogen (N) digestion, duodenal flow and metabolism across the portal-drained viscera (PDV) of growing beef steers, and to elucidate their relationships. Four steers (236${\pm}$7 kg BW) fitted with duodenal cannulae and chronic indwelling catheters into the portal and mesenteric veins and abdominal aorta were used in a 4${\times}$4 Latin square design. Animals were fed (at 12-h intervals) the 4 diets consisting of whole-crop corn silage (C) and alfalfa hay (A) in 80:20 (C8A2), 60:40 (C6A4), 40:60 (C4A6) and 20:80 (C2A8) ratios of which dietary crude protein (CP) was 10.5, 12.0, 13.5 and 15.0% of dry matter (DM), respectively. Feeding level was restricted to 95% of ad libitum intake to measure N digestion, blood flow and net flux of N across the PDV. Digestibility of DM and neutral detergent fiber and digestible energy intake linearly increased as the ratio of alfalfa hay increased. The N intake, duodenal flow and intestinal disappearance increased linearly with increasing alfalfa hay. Arterial and portal concentrations of ${\alpha}$-amino N showed a quadratic response to increasing levels of alfalfa hay and were the highest in steers fed the C6A4 diet. The net PDV release of ${\alpha}$-amino N and ammonia N increased linearly with increasing alfalfa hay, but urea N uptake by PDV did not differ among diets. As a percentage of apparently digested N in the total gut, net PDV release of ${\alpha}$-amino N linearly decreased from 66 to 48% with increasing alfalfa hay. Conversely, net PDV recovery of ${\alpha}$-amino N to intestinal N disappearance varied with increasing alfalfa hay accounting for 49, 50, 58 and 61% on C8A2, C6A4, C4A6 and C2A8 diets, respectively. Net PDV uptake of urea N, relative to apparently digested N, linearly decreased from 81 to 25% as alfalfa hay increased from 20 to 80% of DM intake. Considering PDV uptake of urea N, microbial efficiency and conversion of total tract digested N to PDV ${\alpha}$-amino N net supply, a diet consisting of 80% whole-crop corn silage and 20% alfalfa hay (10.5% CP) was the best, while considering the quantities of intestinal N disappearance and ${\alpha}$-amino N absorption, a diet of 20% whole-crop corn silage and 80% alfalfa hay (15% CP) would be preferred. The proportion of ${\alpha}$-amino N recovered by PDV relative to the intestinal N disappearance may vary with energy intake level of mixed forage diets.

A Six-Layer SVAT Model for Energy and Mass Transfer and Its Application to a Spruce(Picea abies [L].Karst) Forest in Central Germany (독일가문비나무(Picea abies [L].Karst)림(林)에서의 Energy와 물질순환(物質循環)에 대(對)한 SLODSVAT(Six-Layer One-Dimensional Soil-Vegetation-Atmosphere-Transfer) 모델과 그 적용(適用))

  • Oltchev, A.;Constantin, J.;Gravenhorst, G.;Ibrom, A.;Joo, Yeong-Teuk;Kim, Young-Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.210-224
    • /
    • 1996
  • The SLODSVAT consists of interrelated submodels that simulate : the transfer of radiation, water vapour, sensible heat, carbon dioxide and momentum in two canopy layers determined by environmental conditions and ecophysiological properties of the vegetation ; uptake and storage of water in the "root-stem-leaf" system of plants ; interception of rainfall by the canopy layers and infiltration and storage of rain water in the four soil layers. A comparison of the results of modeling experiments and field micro-climatic observations in a spruce forest(Picea abies [L].Karst) in the Soiling hills(Germany) shows, that the SLODSVAT can describe and simulate the short-term(diurnal) as well as the long-term(seasonal) variability of water vapour and sensible heat fluxes adequately to natural processes under different environmental conditions. It proves that it is possible to estimate and predict the transpiration and evapotranspiration rates for spruce forest ecosystems on the patch and landscape scales for one vegetation period, if certain meteorological, botanical and hydrological information for the structure of the atmospheric boundary layer, the canopy and the soil are available.

  • PDF

Development of Radiation Shielding Analysis Program Using Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 방사선차폐해석 프로그램개발)

  • Park, Ho-Sin;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.51-62
    • /
    • 1993
  • A computational program [TDET] of the particle transport equation is developed on radiation shielding problem in two-dimensional cartesian geometry based on the discrete element method. Not like the ordinary discrete ordinates method, the quadrature set of angles is not fixed but steered by the spatially dependent angular fluxes. The angular dependence of the scattering source term in the particle transport equation is described by series expansion in spherical harmonics, and the energy dependence of the particles is considered as well. Three different benchmark tests are made for verification of TDET : For the ray effect analysis on a square absorber with a flat isotropic source, the results of TDET calculation are quite well conformed to those of MORSE-CG calculation while TDET ameliorates the ray effect more effectively than S$_{N}$ calculation. In the analysis of the streaming leakage through a narrow vacuum duct in a shield, TDET shows conspicuous and remarkable results of streaming leakage through the duct as well as MORSE-CG does, and quite better than S$_{N}$ calculation. In a realistic reactor shielding situation which treats in two cases of the isotropic scattering and of linearly anisotropic scattering with two groups of energy, TDET calculations show local ray effect between neighboring meshes compared with S$_{N}$ calculations in which the ray effect extends broadly over several meshes.eshes.

  • PDF

Pyrometallurgy Process for a Low Graded Gold Alloy with PbO and CaO (저품위 금합금의 PbO와 CaO를 이용한 건식 정련 공정)

  • Song, Jeongho;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.608-613
    • /
    • 2017
  • We proposed a pyrometallurgical process to achieve gold alloy with an Au content of more than 80wt% from low grade (<35wt%) gold alloys. We performed the heat treatment at a temperature of $1200^{\circ}C$ for 5 hrs using Au35wt%-Ag5wt%-Cu60wt% gold alloys mixed with 1/2 weighed PbO and CaO flux by varying the ratio of PbO/(PbO+CaO) from 0 to 1. We investigated the change in content of the samples with energy dispersive X-ray spectroscopy (EDS) and time of flight secondary ion mass spectrometry (ToF-SIMS). The EDS results showed that the Au content increased from 35.0wt% in the PbO-only sample to 86.7wt% (in the PbO/(PbO+CaO) 1:1 sample), while the other samples achieved more that 84wt%. In addition, the 2/3 flux ratio sample showed the lowest Ag loss into the flux. In the ToF-SIMS results, the PbO only and CaO only fluxes had Au+ peak intensities of 349 and 37, respectively. Although the CaO-only flux might be more favorable considering the loss of Au into the flux, we concluded that the amount of Au lost into the flux could be ignored. Our results imply that that the pyrometallurgical process using a mixed flux is an effective hydrometallurgical process.