• Title/Summary/Keyword: Energy efficient communication

Search Result 700, Processing Time 0.025 seconds

Joint Access Point Selection and Local Discriminant Embedding for Energy Efficient and Accurate Wi-Fi Positioning

  • Deng, Zhi-An;Xu, Yu-Bin;Ma, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.794-814
    • /
    • 2012
  • We propose a novel method for improving Wi-Fi positioning accuracy while reducing the energy consumption of mobile devices. Our method presents three contributions. First, we jointly and intelligently select the optimal subset of access points for positioning via maximum mutual information criterion. Second, we further propose local discriminant embedding algorithm for nonlinear discriminative feature extraction, a process that cannot be effectively handled by existing linear techniques. Third, to reduce complexity and make input signal space more compact, we incorporate clustering analysis to localize the positioning model. Experiments in realistic environments demonstrate that the proposed method can lower energy consumption while achieving higher accuracy compared with previous methods. The improvement can be attributed to the capability of our method to extract the most discriminative features for positioning as well as require smaller computation cost and shorter sensing time.

An Energy efficient protocol to increase network life in WSN

  • Kshatri, Dinesh Baniya;Lee, WooSuk;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.62-65
    • /
    • 2015
  • Wireless Sensor Network consists of several sensor nodes, these nodes loss some of their energy after the process of communication. So an energy efficient approach is required to improve the life of the network. In case of broadcast network, LEACH protocol uses an aggregative approach by creating cluster of nodes. Now the major concern is to built such clusters over WSN in an optimized way. This work presents the improvement over LEACH protocol. Hence we have different work environments where the network is having different capacities. The proposed work shows how the life time of the network will improve when the number of nodes varies within the network.

Design of an Efficient Power Manger through the cooperative Dynamic Power Management for Ad hoc Wireless Sensor Networks (Ad hoc 무선 센서네트워크에서의 효율 전력 매니지먼트에 관한 연구)

  • Jeon, Dong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.809-814
    • /
    • 2011
  • The major resource problem in sensor networks is energy efficiency. There are two major access methods to efficiently use energy. The first is to use dynamic power management (DPM). The second is to use energy efficient protocols. In DPM methods, the OS, the power manager, is responsible for managing the proper power state of CPU and each I/O with respect to the events, but the OS is not largely concerned about the internal operation of each network protocols. Also, energy efficient protocols are mainly focused on the power saving operation of the radio PHY. In addition, in wireless sensor network most of tasks are connected to communication. In such a situation, traditional power managers can waste unpredicted power. In this paper, we introduce an efficient power manger that can reduce a lot of unwanted power consumption through cooperative power management (CPM) in communication-related tasks between each units, such as radio, sensing unit, and CPU, for ad hoc wireless sensor nodes.

Communication Event-driven Power Management for Energy Efficient Wireless Sensor Network (에너지 효율적인 무선 센서 네트워크를 위한 통신 이벤트 기반의 전력 관리 방안에 관한 연구)

  • Hwang, Kwang-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7B
    • /
    • pp.411-421
    • /
    • 2007
  • It is well known that the biggest problem of wireless sensor networks is power conservation. There have been two major approaches to efficiently use energy in wireless sensor networks. One is to use a dynamic power management scheme and the other is to use energy efficient protocols. In the former, the power manager is responsible for managing the proper power state of CPU and each I/O with respect to the events, but the power manager does not concern about the internal operation of the underlying network protocols. Thus such conventional power managers can waste unpredicted power during communication period. On the other hand, the energy efficient protocols are just focused on the power saving operation of the radio PHY. In this paper, we introduce an energy-efficient power saving mechanism that can significantly reduce unwanted power consumption of wireless sensor nodes through the communication event-driven power management. We show that our scheme improves the energy conservation in the entire network through simulations.

Efficient and Secure Routing Protocol forWireless Sensor Networks through SNR Based Dynamic Clustering Mechanisms

  • Ganesh, Subramanian;Amutha, Ramachandran
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.422-429
    • /
    • 2013
  • Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.

Review on Energy Efficient Clustering based Routing Protocol

  • Kanu Patel;Hardik Modi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.169-178
    • /
    • 2023
  • Wireless sensor network is wieldy use for IoT application. The sensor node consider as physical device in IoT architecture. This all sensor node are operated with battery so the power consumption is very high during the data communication and low during the sensing the environment. Without proper planning of data communication the network might be dead very early so primary objective of the cluster based routing protocol is to enhance the battery life and run the application for longer time. In this paper we have comprehensive of twenty research paper related with clustering based routing protocol. We have taken basic information, network simulation parameters and performance parameters for the comparison. In particular, we have taken clustering manner, node deployment, scalability, data aggregation, power consumption and implementation cost many more points for the comparison of all 20 protocol. Along with basic information we also consider the network simulation parameters like number of nodes, simulation time, simulator name, initial energy and communication range as well energy consumption, throughput, network lifetime, packet delivery ration, jitter and fault tolerance parameters about the performance parameters. Finally we have summarize the technical aspect and few common parameter must be fulfill or consider for the design energy efficient cluster based routing protocol.

REVIEW ON ENERGY EFFICIENT OPPORTUNISTIC ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS

  • Ismail, Nasarudin;Mohamad, Mohd Murtadha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3064-3094
    • /
    • 2018
  • Currently, the Underwater Sensor Networks (UWSNs) is mainly an interesting area due to its ability to provide a technology to gather many valuable data from underwater environment such as tsunami monitoring sensor, military tactical application, environmental monitoring and many more. However, UWSNs is suffering from limited energy, high packet loss and the use of acoustic communication. In UWSNs most of the energy consumption is used during the forwarding of packet data from the source to the destination. Therefore, many researchers are eager to design energy efficient routing protocol to minimize energy consumption in UWSNs. As the opportunistic routing (OR) is the most promising method to be used in UWSNs, this paper focuses on the existing proposed energy efficient OR protocol in UWSNs. This paper reviews the existing proposed energy efficient OR protocol, classifying them into 3 categories namely sender-side-based, receiver-side-based and hybrid. Furthermore each of the protocols is reviewed in detail, and its advantages and disadvantages are discussed. Finally, we discuss potential future work research directions in UWSNs, especially for energy efficient OR protocol design.

RRSEB: A Reliable Routing Scheme For Energy-Balancing Using A Self-Adaptive Method In Wireless Sensor Networks

  • Shamsan Saleh, Ahmed M.;Ali, Borhanuddin Mohd.;Mohamad, Hafizal;Rasid, Mohd Fadlee A.;Ismail, Alyani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1585-1609
    • /
    • 2013
  • Over recent years, enormous amounts of research in wireless sensor networks (WSNs) have been conducted, due to its multifarious applications such as in environmental monitoring, object tracking, disaster management, manufacturing, monitoring and control. In some of WSN applications dependent the energy-efficient and link reliability are demanded. Hence, this paper presents a routing protocol that considers these two criteria. We propose a new mechanism called Reliable Routing Scheme for Energy-Balanced (RRSEB) to reduce the packets dropped during the data communications. It is based on Swarm Intelligence (SI) using the Ant Colony Optimization (ACO) method. The RRSEB is a self-adaptive method to ensure the high routing reliability in WSNs, if the failures occur due to the movement of the sensor nodes or sensor node's energy depletion. This is done by introducing a new method to create alternative paths together with the data routing obtained during the path discovery stage. The goal of this operation is to update and offer new routing information in order to construct the multiple paths resulting in an increased reliability of the sensor network. From the simulation, we have seen that the proposed method shows better results in terms of packet delivery ratio and energy efficiency.

Energy Efficiency Enhancement of TICK -based Fuzzy Logic for Selecting Forwarding Nodes in WSNs

  • Ashraf, Muhammad;Cho, Tae Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4271-4294
    • /
    • 2018
  • Communication cost is the most important factor in Wireless Sensor Networks (WSNs), as exchanging control keying messages consumes a large amount of energy from the constituent sensor nodes. Time-based Dynamic Keying and En-Route Filtering (TICK) can reduce the communication costs by utilizing local time values of the en-route nodes to generate one-time dynamic keys that are used to encrypt reports in a manner that further avoids the regular keying or re-keying of messages. Although TICK is more energy efficient, it employs no re-encryption operation strategy that cannot determine whether a healthy report might be considered as malicious if the clock drift between the source node and the forwarding node is too large. Secure SOurce-BAsed Loose Synchronization (SOBAS) employs a selective encryption en-route in which fixed nodes are selected to re-encrypt the data. Therefore, the selection of encryption nodes is non-adaptive, and the dynamic network conditions (i.e., The residual energy of en-route nodes, hop count, and false positive rate) are also not focused in SOBAS. We propose an energy efficient selection of re-encryption nodes based on fuzzy logic. Simulation results indicate that the proposed method achieves better energy conservation at the en-route nodes along the path when compared to TICK and SOBAS.

Energy-Efficient Last-Level Cache Management for PCM Memory Systems

  • Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.188-193
    • /
    • 2022
  • The energy efficiency of memory systems is an important task in designing future computer systems as memory capacity continues to increase to accommodate the growing big data. In this article, we present an energy-efficient last-level cache management policy for future mobile systems. The proposed policy makes use of low-power PCM (phase-change memory) as the main memory medium, and reduces the amount of data written to PCM, thereby saving memory energy consumptions. To do so, the policy keeps track of the modified cache lines within each cache block, and replaces the last-level cache block that incurs the smallest PCM writing upon cache replacement requests. Also, the policy considers the access bit of cache blocks along with the cache line modifications in order not to degrade the cache hit ratio. Simulation experiments using SPEC benchmarks show that the proposed policy reduces the power consumption of PCM memory by 22.7% on average without degrading performances.