• Title/Summary/Keyword: Energy efficiency evaluation

Search Result 872, Processing Time 0.024 seconds

Evaluation of non-conventional feeds for ruminants using in situ nylon bag and the mobile bag technique (In situ 나일론백 그리고 모바일백 방법을 이용한 국내 부존사료자원의 반추가축용 사료 가치 평가)

  • Baek, Youl-Chang;Choi, Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.73-83
    • /
    • 2017
  • This study was conducted to evaluate the chemical composition, digestibility, and energy value of 15 non-conventional feeds produced in South Korea as ruminant feeds. Three Hanwoo steers (body weight, $520{\pm}20.20kg$) fitted with a permanent rumen cannula and duodenal cannula were housed individually in tie-stall barns, followed by a 14-day adaptation period and 3-day experimental period. Chemical composition analysis, in situ nylon bag, and mobile bag technique were used as experiments. As a result of the chemical composition analysis offeeds, crude protein (CP) contentsofmalt meal, perilla meal, soy sauce cake, and soymilk residue were greater than 30%. As a result of the degradability characteristics analysis of feeds using an in situ nylon bag, rumen undegraded protein (RUP) contents of beet pulp, brewer's grain, coffee meal, malt meal, milo bran, perilla meal, ramen residue, and soymilk residue were greater than 50%. Analysis of total digestible nutrient (TDN) values of feeds using an in situ mobile bag showed that TDN values of beet pulp, brewer's grain, makgeolli residue, milo bran, perilla meal, ramen residue, rice bran, soy sauce cake, soybean curd cake, soymilk residue, and wheat bran weregreater than 50%. In summary, these non-conventional feeds have high potential value as good feed resources to replace formulated feeds or roughage. Therefore, the chemical composition, digestibility, and energy value of non-conventional feeds obtained from this study can be used as base data for the manufacture of ruminant total mixed ration (TMR) with improved feed efficiency, reduced feed costs, and reduction of environmental pollution.

Design and Environmental/Economic Performance Evaluation of Wastewater Treatment Plants Using Modeling Methodology (모델링 기법을 이용한 하수처리 공정 설계와 환경성 및 경제성 평가)

  • Kim, MinHan;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.610-618
    • /
    • 2008
  • It is not easy to compare the treatment processes and find an optimum operating condition by the experiments due to influent conditions, treatment processes, various operational conditions and complex factors in real wastewater treatment system and also need a lot of time and costs. In this paper, the activated sludge models are applied to four principal biological wastewater treatment processes, $A_2O$(anaerobic/anoxic/oxic process), Bardenpho(4 steps), VIP(Virginia Initiative Plant) and UCT(University of Cape Town), and are used to compare their environmental and economic assessment for four key processes. In order to evaluate each processes, a new assessment index which can compare the efficiency of treatment performances in various processes is proposed, which considers both environmental and economic cost. It shows that the proposed index can be used to select the optimum processes among the candidate treatment processes as well as to find the optimum condition in each process. And it can find the change of economic and environmental index under the changes of influent flowrate and aerobic reaction size and predict the optimum index under various operation conditions.

Studies on health management and nutritional evaluation by milk components analysis in dairy cows III. Relationship between conception rates, and milk urea nitrogen and milk protein concentration in a large dairy herd of high yielding cows (젖소에서 유성분 분석을 통한 영양상태 평가 및 건강관리에 관한 연구 III. 고능력우 위주의 대규모 목장에서 우유중 단백질과 요소태질소 수준이 수태율에 미치는 영향)

  • Moon, Jin-san;Joo, Yi-seok;Jang, Gum-chan;Yoon, Yong-dhuk;Lee, Bo-kyeun;Park, Young-ho;Son, Chang-ho
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.383-391
    • /
    • 2000
  • Milk urea nitrogen (MUN) determination is being used an indicator of the protein-energy balance in dairy herds. A faulty balance can be corrected to optimize milk production and animal health. This parameter is regarded as a potential tool to evaluate suboptimal feeding practices and reproductive disorders. Therefore, the purpose of this study was to investigate the response of milk composition by regular feeding analysis and to compared the relationship between MUN and milk protein(MP) and fertility at the insemination period in Holstein dairy cows. Total of 355 artificial insemination (AI) for 150 Holstein cows in the herd were used to examine the relationship between MUN and MP content and conception rate. The AI occured for the cows 50 to 150 day in milk, and MUN and MP concentration were determined using automated infrared procedures. The mean${\pm}$standard deviation of MUN and MP concentration in the herd were $15.6{\pm}2.1mg/dl$ and $3.23{\pm}0.38%$, respectively. MUN contents of bulk milk were increase by elevated crude protein intake. The conception rate was lower in the cows in which the level of MUN was lower than > 8.0mg/dl (10.0%) or > higher than 25mg/dl (15.4%) relative to the cows in MUN content of 12.0~17.9 mg/dl (36.7%) at the time of insemination. Also, lower MP than 3.0% or higher MP than 3.25% were associated with a lower conception rates. Consequently, MUN and MP analyses may be used serve as a monitoring tool of protein and energy nutritional balance to improve reproduction efficiency in Holstein dairy cows.

  • PDF

A Study on the Green Ship Design for Ultra Large Container Ship (대형 컨테이너 운반선의 그린쉽 설계에 관한 연구)

  • Kim, Mingyu;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.558-570
    • /
    • 2015
  • A study on the green ship design for Ultra Large Container Ship (ULCS, 18,000 TEU Class Container Ship) was performed based on the four step procedures of the initial design and hull form optimization to maximize economic and propulsive performance. The first, the design procedure for ULCS was surveyed with economic evaluation considering environmental rules and regulations. The second, the characteristics of single and twin skeg container ships were investigated in view of initial design and performances. The third, the hull form optimization for single and twin skeg ships with the same dimensions was conducted to improve the resistance and propulsive performances at design draught and speed by several variations and the results of the optimization were verified by numerical calculations of CFD and model test. The last, for the estimated operating profile of draught and speed, the hull forms of single and twin sked ships were optimized by CFD. From this study, the methodologies to optimize the hull form of ULCS were proposed with considerations during the green ship design and the improvement of the energy efficiency for the optimized hull forms was confirmed by the proposed formula of the total energy considering design conditions, operating profile and fuel oil consumption.

A Study on MAC Protocol Design for Mobile Healthcare (모바일 헬스케어를 위한 MAC 프로토콜 설계에 관한 연구)

  • Jeong, Pil-Seong;Kim, Hyeon-Gyu;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.323-335
    • /
    • 2015
  • Mobile healthcare is a fusion of information technology and biotechnology and is a new type of health management service to keep people's health at anytime and anywhere without regard to time and space. The WBAN(Wireless Body Area Network) technology that collects bio signals and the data analysis and monitoring technology using mobile devices are essential for serving mobile healthcare. WBAN consisting of users with mobile devices meet another WBAN during movement, WBANs transmit data to the other media. Because of WBAN conflict, several nodes transmit data in same time slot so a collision will occur, resulting in the data transmission being failed and need more energy for re-transmission. In this thesis, we proposed a MAC protocol for WBAN with mobility to solve these problems. First, we proposed a superframe structure for WBAN. The proposed superframe consists of a TDMA(Time Division Muliple Access) based contention access phase with which a node can transmit data in its own time slot and a contention phase using CSMA/CA algorithm. Second, we proposed a network merging algorithm for conflicting WBAN based on the proposed MAC protocol. When a WBAN with mobility conflicts with other WBAN, data frame collision is reduced through network reestablishment. Simulations are performed using a Castalia based on the OMNeT++ network simulation framework to estimate the performance of the proposed superframe and algorithms. We estimated the performance of WBAN based on the proposed MAC protocol by comparing the performance of the WBAN based on IEEE 802.15.6. Performance evaluation results show that the packet transmission success rate and energy efficiency are improved by reducing the probability of collision using the proposed MAC protocol.

Design and Configuration of 200kW Organic Rankine Cycle Turbine (200kW ORC 터빈 개발 및 구성)

  • Han, Sangjo;Seo, JongBeom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1057-1064
    • /
    • 2014
  • Recently, there has been a growing interest in sustainable energy. One method that has been used is an organic Rankine cycle using conventional turbine technology with a low-temperature waste heat source. A 200-kW organic Rankine cycle (ORC) system was designed for a waste heat recovery application using R245fa as the working fluid. A radial turbine running at 15,000 rpm was employed to generate more than 200 kW with an expansion ratio of nine. Because an ORC turbine uses a refrigerant as the working fluid, the ideal gas law was not employed to design the turbine. In addition, the complexity of the molecular structure of R245fa made it difficult to design the turbine. Because R245fa has an Ma value of one at a low velocity for the working fluid (about 1/3 of the speed of sound in air) at about $100^{\circ}C$, it easily reaches a supersonic flow condition with a small pressure expansion. To increase the efficiency of the turbine, a dual stage radial-type turbine with a subsonic speed was suggested. This paper will describe the design procedure and performance evaluation of the ORC turbine using R245fa.

Multiple Linear Regression Analysis of PV Power Forecasting for Evaluation and Selection of Suitable PV Sites (태양광 발전소 건설부지 평가 및 선정을 위한 선형회귀분석 기반 태양광 발전량 추정 모델)

  • Heo, Jae;Park, Bumsoo;Kim, Byungil;Han, SangUk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.126-131
    • /
    • 2019
  • The estimation of available solar energy at particular locations is critical to find and assess suitable locations of PV sites. The amount of PV power generation is however affected by various geographical factors (e.g., weather), which may make it difficult to identify the complex relationship between affecting factors and power outputs and to apply findings from one study to another in different locations. This study thus undertakes a regression analysis using data collected from 172 PV plants spatially distributed in Korea to identify critical weather conditions and estimate the potential power generation of PV systems. Such data also include solar radiation, precipitation, fine dust, humidity, temperature, cloud amount, sunshine duration, and wind speed. The estimated PV power generation is then compared to the actual PV power generation to evaluate prediction performance. As a result, the proposed model achieves a MAPE of 11.696(%) and an R-squred of 0.979. It is also found that the variables, excluding humidity, are all statistically significant in predicting the efficiency of PV power generation. According, this study may facilitate the understanding of what weather conditions can be considered and the estimation of PV power generation for evaluating and determining suitable locations of PV facilities.

Reinforced Anion-exchange Membranes Employing Porous PTFE Support for All-vanadium Redox Flow Battery Application (전 바나듐 레독스 흐름전지 응용을 위한 다공성 PTFE 지지체를 사용한 강화 음이온교환막)

  • Moon, Ha-Nuel;Song, Hyeon-Bee;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.351-362
    • /
    • 2021
  • All-vanadium redox flow battery (VRFB) is one of the promising high-capacity energy storage technologies. The ion-exchange membrane (IEM) is a key component influencing the charge-discharge performance and durability of VRFB. In this study, a pore-filled anion-exchange membrane (PFAEM) was fabricated by filling the pores of porous polytetrafluoroethylene (PTFE) support with excellent physical and chemical stability to compensate for the shortcomings of the existing hydrocarbon-based IEMs. The use of a thin porous PTFE support significantly lowered the electrical resistance, and the use of the PTFE support and the introduction of a fluorine moiety into the filling ionomer significantly improved the oxidation stability of the membrane. As a result of the evaluation of the charge-discharge performance, the higher the current efficiency was seen by increasing the fluorine content in the PFAEM, and the superior voltage and energy efficiencies were shown owing to the lower electrical resistance compared to the commercial membrane. In addition, it was confirmed that the use of a hydrophobic PTFE support is more preferable in terms of oxidation stability and charge-discharge performance.

A Comparison Analysis of Life Cycle Cost (LCC) of Pumps - In the Focus on Comparison of Excellent and General Products in Water Industry - (Pump의 생애주기 비용(LCC) 비교 분석 - 물산업 우수제품과 일반제품의 비교를 중심으로 -)

  • Park, Woopyung;Choi, Yong;Jeon, Si Young;Kim, Jinho;Kang, Seongmi
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.3
    • /
    • pp.66-73
    • /
    • 2022
  • In order to induce users to purchase excellent products in the water industry that satisfy the technical standards of excellent products, in this study, it is to present the advantages of the cost aspect of the pumps as the objective basis. It will be to promote technology development of domestic water companies and to create a virtuous cycle structure in the water industry. In order to present an objective basis for the merits in terms of cost, an economic evaluation was conducted through life cycle cost analysis. For the LCC analysis, initial cost (pump cost and installation cost), operation cost (energy cost and maintenance cost) and demolition cost (disposal cost and residual value) are searched and calculated. As the results of comparison on two capacity of pumps, the energy cost of the excellent pump is 212 million KRW lower than the that of general pump in the large pump. The cost of excellent pump was 17 million KRW lower than that of general pump in small capacity pump. As the results of sensibility test, if the product is developed in the direction of improving pump efficiency and increasing the replacement cycle of consumables, it is predicted that the effect on LCC will be large.

Evaluating the Efficacy of Commercial Polysulfone Hollow Fiber Membranes for Separating H2 from H2/CO Gas Mixtures (상용 폴리설폰 중공사막의 수소/일산화탄소 혼합가스 분리 성능 평가)

  • Do Hyoung Kang;Kwanho Jeong;Yudam Jeong;Seung Hyun Song;Seunghee Lee;Sang Yong Nam;Jae-Kyung Jang;Euntae Yang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.352-361
    • /
    • 2023
  • Steam methane reforming is currently the most widely used technology for producing hydrogen, a clean fuel. Hydrogen produced by steam methane reforming contains impurities such as carbon monoxide, and it is essential to undergo an appropriate post-purification step for commercial usage, such as fuel cells. Recently, membrane separation technology has been gaining great attention as an effective purification method; in this study, we evaluated the feasibility of using commercial polysulfone membranes for biogas upgrading to separate and recover hydrogen from a hydrogen/carbon monoxide gas mixture. Initially, we examined the physicochemical properties of the commercial membrane used. We then conducted performance evaluations of the commercial membrane module under various conditions using mixed gas, considering factors such as stage-cut and operating pressure. Finally, based on the evaluation results, we carried out simulations for process design. The maximum H2 permeability and H2/CO separation factor for the commercial membrane process were recorded at 361 GPU and 20.6, respectively. Additionally, the CO removal efficiency reached up to 94%, and the produced hydrogen concentration achieved a maximum of 99.1%.