• Title/Summary/Keyword: Energy efficiency evaluation

Search Result 867, Processing Time 0.032 seconds

Performance Evaluation of Components of Micro Solid Propellant Thruster (마이크로 고체 추진제 추력기 요소의 성능 평가)

  • Lee, Jong-Kwang;Lee, Dae-Hoon;Kwon, Se-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1280-1285
    • /
    • 2004
  • Microsystem technology has been applied to space technology and became one of the enabling technology by which low cost and high efficiency are achievable. Micro propulsion system is a key technology in the miniature satellite because micro satellite requires very small and precise thrust force for maneuvering and attitude control. In this paper research on micro solid propellant thruster is reported. Micro solid propellant thruster has four basic components; micro combustion chamber, micro nozzle, solid propellant and micro igniter. In this research igniter, solid propellant and combustion chamber are focused. Micro igniter was fabricated through typical micromachining and evaluated. The characteristic of solid propellant was investigated to observe burning characteristic and to obtain burning velocity. Change of thrust force and the amount of energy loss following scale down at micro combustion chamber were estimated by numerical simulation based on empirical data and through the calculation normalized specific impulses were compared to figure out the efficiency of combustion chamber.

  • PDF

Performance Evaluation on MEA with Double Layered Catalyst (이중구조 촉매층으로 구성된 MEA의 성능 평가)

  • Kim, Hong-Gun;Kwac, Lee-Ku;Kang, Sung-Soo;Kang, Young-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.55-58
    • /
    • 2006
  • An experimental study is performed to evaluate the performance and the efficiency by humidifying MEA and by making the double-layered catalyst in a fuel cell system which is taken into account the physical and thermal concept. An electrical output produced by PEMFC(Polymer Exchange Membrane Fuel Cell) is measured to assess the performance of the stack and the efficiency is also evaluated according to the different situation in which is placed with and without the humidification of MEA(Membrane Electrolyte Assembly). Subsequently, It is found that the measured values of MEA voltage and current are influenced by the MEA temperature, humidification, and the double-layered catalyst which gives more enhanced values to apply for electric units.

  • PDF

BEHAVIOR AND DUCTILITY OF STRENGTHENED WITH EXTERNAL USING LIFTING HOLE ANCHORAGE SYSTEM

  • Kyeong-Seok Baek;ChangDu Son;Kyoung-Bong Han;Jun-Myung Park;Sun-Kyu Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1618-1624
    • /
    • 2009
  • Since various methods for repairing and rehabilitating have been applied to damaged bridges to increase their load carrying capacity, many researches on the methods have been widely carried out. In particular, In terms of applicability, strengthening efficiency and economical efficiency, external tendons using lifting hole anchorage system is the most effective method among the aforementioned methods. In order to verify the strengthening effectiveness, flexural experiments on the beams strengthened with external tendons using lifting hole anchorage system were carried out. The experiments were conducted on two groups of systems, the existing and the proposed external tendons using lifting hole anchorage system. In addition, An evaluation on ductility of the beams were conducted in this paper.

  • PDF

Power Generation Efficiency Model for Performance Monitoring of Combined Heat and Power Plant (열병합발전의 성능 모니터링을 위한 발전효율 모델)

  • Ko, Sung Guen;Ko, Hong Cheol;Yi, Jun Seok
    • Plant Journal
    • /
    • v.16 no.4
    • /
    • pp.26-32
    • /
    • 2020
  • The performance monitoring system in the power plant should have the capability to estimate power generation efficiency accurately. Several power generation efficiency models have been proposed for the combined heat and power (CHP) plant which produces both electricity and process steam(or heating energy, hereinafter expressed by process steam only). However, most of the models are not sufficiently accurate due to the wrong evaluation of the process steam value. The study suggests Electricity Conversion Efficiency (ECE) model with determination of the heat rate of process steam using operational data. The suggested method is applied to the design data and the resulted trajectory curve of power generation efficiency meets the data closely with R2 99.91%. This result confirms that ECE model with determination of the model coefficient using the operational data estimate the efficiency so accurately that can be used for performance monitoring of CHP plant.

A Study on Policy Alternatives for Major Changes in the Korea's Agricultural Energy System (우리나라 농업 에너지체계의 전환을 위한 정책대안 연구)

  • Jung, In-Whan;Ko, Soon-Chul
    • Journal of Agricultural Extension & Community Development
    • /
    • v.11 no.2
    • /
    • pp.251-265
    • /
    • 2004
  • The agricultural sector's economic structure in Korea is regarded to encounter major barriers on the way toward revitalizing its economic prosperity. Among many, the energy-related problem is one of prime nuclei embedded in the country's agricultural sector. The ought-to-come structural changes in the country's agricultural energy system hinge upon the central government's policy direction as well as efforts of local governments and local farming community members. The indirect aids via 'cross subsidy' of electricity tariff rate and 'tax-exempt price' of oil fuels are two notable causes of the unsustainable energy consumption pattern in the country's agricultural sector. As measures, demand-side management(DSM) and energy-efficiency promotions are regarded to be the most attractive methods for energy conservation and economic productivity as well. Development of renewable energy sources are also receiving a great deal of attention for the long-term alternatives to the country's existing oil-based agricultural production mode. This study examines the contributive potential of DSM approaches and renewables-based technologies. With the critical evaluation on the concurrent adversities of the country's agricultural energy system, various sources of renewable energy-solar power, wind power, biomass, etc.-are examined for the purpose of technological and economical viability. As sufficient potentials of renewable energy sources are being estimated, both the system production cost and the installation cost for the county's rural areas are expected to lower in the long term. DSM options are also evaluated to be fruitful even in the short term. Both the public and civil arenas must galvanise each side's effort in order to promote these policy options and community potentials.

  • PDF

Analysis of Grounding Resistance for Zero Energy Town Floating PV System Using Underground Wiring (매설지선 방식을 적용한 에너지 자립마을용 수상 태양광 발전 시스템의 접지저항 분석)

  • Ko, Jae-Woo;Lim, Jong-Log;Kim, David K.;Cha, Hae-Lim;Kim, Si-Han;Lee, Chang-Koo;Ahn, Hyung-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.303-306
    • /
    • 2016
  • Floating PV system is installed on the water such as artificial lake, reservoir, river for the purposes of zero energy town and/or large scale of PV station. There are electrical gains from cooling effect by water and reflection of water surface. Particularly, floating PV power station with high efficiency solar cell modules receives a lot of attention recently. Floating PV system is installed on the water, which means grounding method to the frame of solar cell and electrical box such as connector band and distribution panelboard should be applied in different way from grounding method of PV system on land. The grounding resistance should be 10[${\Omega}$] in case the voltage is over 400[V] in accordance with Korean Standard. The applicable parameters are the resistivity of water in various circumstances, depth of water, and length of electrode in order to meet 10[${\Omega}$] of grounding resistance. We calculated appropriate length of the electrode on the basis of theoretical equation of grounding resistance and analyzed the relation between each parameters through MATLAB simulation. This paper explains grounding system of floating PV power station and presents considerations on grounding design according to the resistivity of water.

Emergy-Simulation Based Building Retrofit

  • Hwang, Yi
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.5-13
    • /
    • 2014
  • This paper introduces emergy(spelled with "m") that is a new environmental indicator in architecture, aiming to clarify conflicting claims of building design components in the process of energy-retrofit. Much of design practitioners' attention on low energy use in operational phases, may simply shift the lowered environmental impact within the building boundary to large consumption of energy in another area. Specifically, building energy reduction strategies without a holistic view starting from natural formation, may lead to the depletion of non-renewable geobiological sources (e.g. minerals, fossil fuels, etc.), which leaves a building with an isolated energy-efficient object. Therefore, to overcome the narrow outlook, this research discusses the total ecological impact of a building which embraces all process energy as well as environmental cost represented by emergy. A case study has been conducted to explore emergy-driven design work. In comparison with operational energy-driven scenarios, the results elucidate how energy and emergy-oriented decision-making bring about different design results, and quantify building components' emergy contribution in the end. An average-size ($101.9m^2$) single family house located in South Korea was sampled as a benchmark case, and the analysis of energy and material use was conducted for establishment of the baseline. Adoption of the small building is effective for the goal of study since this research intends to measure environmental impact according to variation of passive design elements (windows size, building orientation, wall materials) with new metric (emergy) regardless of mechanical systems. Performance simulations of operational energy were developed and analyzed separately from the calculation of emergy magnitudes in building construction, and then the total emergy demand of each proposed design was evaluated. Emergy synthesis results verify that the least operational energy scenario requires greater investment in indirect energy in construction, which clearly reveals that efficiency gains are likely to be overwhelmed by increment of material flows. This result places importance on consideration of indirect energy use underscoring necessity of emergy evaluation towards the environment-friendly building in broader sense.

An optimization design study of producing transuranic nuclides in high flux reactor

  • Wei Xu;Jian Li;Jing Zhao;Ding She;Zhihong Liu;Heng Xie;Lei Shi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2723-2733
    • /
    • 2023
  • Transuranic nuclides (such as 238Pu, 252Cf, 249Bk, etc.) have a wide range of application in industry, medicine, agriculture, and other fields. However, due to the complex conversion chain and remarkable fission losses in the process of transuranic nuclides production, the generation amounts are extremely low. High flux reactor with high neutron flux and flexible irradiation channels, is regarded as the promising candidate for producing transuranic nuclides. It is of great significance to increase the conversion ratio of transuranic nuclides, resulting in higher efficiency and better economy. In this paper, we perform an optimization design evaluation of producing transuranic nuclides in high flux reactor, which includes optimization design of irradiation target and influence study of reactor core loading. It is demonstrated that the production rate increases with appropriately determined target material and target structure. The target loading scheme in the irradiation channel also has a significant influence on the production of transuranic nuclides.

Performance evaluation of brazed aluminum heat exchangers for a condenser in residential air-conditioning applications (가정용 공조기의 응축기 적용 알루미늄 열교환기의 성능 평가)

  • 김만회;김권진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.44-55
    • /
    • 1998
  • The evaluation of aluminum flat tube and louver fin heat exchangers for a condenser in residential air-conditioning applications has been conducted. A series of tests for two-different brazed aluminum heat exchangers was performed and the results were compared with conventional fin and tube heat exchangers for residential air-conditioning system. Refrigerant charge amount for a window-system air-conditioner with the brazed aluminum condenser is decreased by 35% and the volume and material of heat exchanger can be reduced by 50% compared to the conventional fin and tube heat exchangers.

  • PDF

A Evaluation of Sun Tracking Performance of Parabolic Dish Concentrator using Vision System (비전시스템을 이용한 태양추적시스템의 추적정밀도 평가)

  • 안효진;박영칠
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.408-408
    • /
    • 2000
  • A parabolic dish concentrator used in a high temperature application of solar energy tracks the sun's movement by two axis sun tracking system. In such a system, sun tracking performance affects the system efficiency directly. Generally the higher the tracking accuracy is, the better the system performance is. A large number of parabolic dish type concentrators has been developed and implemented in the world. However none of them clearly provided a qualitative method of how the accuracy of the sun tracking system can be evaluated. The work presented here is the evaluation of sun tracking performance of parabolic dish concentrator, which follows the sun's movement by the sensor, using computer vision system. We install a camera on the parabolic dish concentrator. While the concentrator follows the sun, sun's images are captured continuously. Then the performance of sun tracking system was evaluated by analyzing the variation of the position of the sun in the images.

  • PDF