• Title/Summary/Keyword: Energy data

Search Result 11,876, Processing Time 0.047 seconds

Analysis and Forecasting of Daily Bulk Shipping Freight Rates Using Error Correction Models (오차교정모형을 활용한 일간 벌크선 해상운임 분석과 예측)

  • Ko, Byoung-Wook
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.129-141
    • /
    • 2023
  • This study analyzes the dynamic characteristics of daily freight rates of dry bulk and tanker shipping markets and their forecasting accuracy by using the error correction models. In order to calculate the error terms from the co-integrated time series, this study uses the common stochastic trend model (CSTM model) and vector error correction model (VECM model). First, the error correction model using the error term from the CSTM model yields more appropriate results of adjustment speed coefficient than one using the error term from the VECM model. Furthermore, according to the adjusted determination coefficients (adjR2), the error correction model of CSTM-model error term shows more model fitness than that of VECM-model error term. Second, according to the criteria of mean absolute error (MAE) and mean absolute scaled error (MASE) which measure the forecasting accuracy, the results show that the error correction model with CSTM-model error term produces more accurate forecasts than that of VECM-model error term in the 12 cases among the total 15 cases. This study proposes the analysis and forecast tasks 1) using both of the CSTM-model and VECM-model error terms at the same time and 2) incorporating additional data of commodity and energy markets, and 3) differentiating the adjustment speed coefficients based the sign of the error term as the future research topics.

Understanding and Trends of Roll-to-Roll Operation (롤투롤 공정의 이해 및 동향)

  • Yeong-Woo Ha;Gi-Hwan Kim;Dong-Chan Lim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.36-42
    • /
    • 2024
  • Roll-to-roll processing holds an integral position within the manufacturing landscape, and its significance reverberates across numerous industries. This versatile technology platform encompasses a diverse array of process methods and accommodates a wide spectrum of material categories, making it a cornerstone of modern production. Within this expansive domain, two commonly employed coating techniques, namely the slot die and gravure coating methods, have earned their prominence for their precision and efficiency in delivering flawless coatings. Additionally, the realm of drying processes relies heavily on thermal drying, infrared (IR) drying, and ultraviolet (UV) drying methods to expedite the transformation of materials from their liquid or semi-liquid states to solid, ready-to-use products. The undeniable importance of roll-to-roll processing lies in its ability to streamline manufacturing processes, reduce costs, and enhance product quality. This article embarks on a comprehensive journey to fathom the depth of this importance by delving into the intricacies of these common roll-to-roll process methods. Through rigorous research and meticulous data collection, we aim to shed light on the pivotal role these techniques play in shaping various industries and advancing the world of manufacturing. By understanding their significance, we can harness the full potential of roll-to-roll processing and pave the way for innovation and excellence in production.

Technology Standards Policy Support Plans for the Advancement of Smart Manufacturing: Focusing on Experts AHP and IPA (스마트제조 고도화를 위한 기술표준 정책영역 발굴 및 우선순위 도출: 전문가 AHP와 IPA를 중심으로)

  • Kim, Jaeyoung;Jung, Dooyup;Jin, Young-Hyun;Kang, Byung-Goo
    • Informatization Policy
    • /
    • v.30 no.4
    • /
    • pp.40-61
    • /
    • 2023
  • The adoption of smart factories and smart manufacturing as strategies to enhance competitiveness and stimulate growth in the manufacturing sector is vital for a country's future competitiveness and industrial transformation. The government has consistently pursued smart manufacturing innovation policies starting with the Manufacturing Innovation 3.0 strategy in the Ministry of Industry. This study aims to identify policy areas for smart factories and smart manufacturing based on technical standards. Analyzing policy areas at the current stage where the establishment and support of domestic standards aligning with international technical standards are required is crucial. By prioritizing smart manufacturing process areas within the industry, policymakers can make well-informed decisions to advance smart manufacturing without blindly following international standardization in already well-established areas. To achieve this, the study utilizes a hierarchical analysis method including expert interviews and importance-performance analysis for the five major process areas. The findings underscore the importance of proactive participation in standardization for emerging technologies, such as data and security, instead of solely focusing on areas with extensive international standardization. Additionally, policymakers need to consider carbon emissions, energy costs, and global environmental challenges to address international trends in export and digital trade effectively.

Standard Procedures and Field Application Case of Constant Pressure Injection Test for Evaluating Hydrogeological Characteristics in Deep Fractured Rock Aquifer (고심도 균열암반대수층 수리지질특성 평가를 위한 정압주입시험 조사절차 및 현장적용사례 연구)

  • Hangbok Lee;Chan Park;Eui-Seob Park;Yong-Bok Jung;Dae-Sung Cheon;SeongHo Bae;Hyung-Mok Kim;Ki Seog Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.348-372
    • /
    • 2023
  • In relation to the high-level radioactive waste disposal project in deep fractured rock aquifer environments, it is essential to evaluate hydrogeological characteristics for evaluating the suitability of the site and operational stability. Such subsurface hydrogeological data is obtained through in-situ tests using boreholes excavated at the target site. The accuracy and reliability of the investigation results are directly related to the selection of appropriate test methods, the performance of the investigation system, standardization of the investigation procedure. In this report, we introduce the detailed procedures for the representative test method, the constant pressure injection test (CPIT), which is used to determine the key hydrogeological parameters of the subsurface fractured rock aquifer, namely hydraulic conductivity and storativity. This report further refines the standard test method suggested by the KSRM in 2022 and includes practical field application case conducted in volcanic rock aquifers where this investigation procedure has been applied.

A Study on the Performance Analysis of AIoT High-Efficiency Streetlamp for Carbon Emissions (탄소배출권용 AIoT 고효율 가로등 성능분석 연구)

  • Seung-Ho Park;Seong-Uk Shin;Kyung-Sunl Yoo
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.13-19
    • /
    • 2023
  • Following the signing of the Paris Agreement on Climate Change (UNFCCC, 2015), the world is expanding greenhouse gas reduction activities through comprehensive participation that includes not only developed countries but also developing countries. Major countries around the world are placing high expectations on the effectiveness of total carbon emissions regulation through the carbon emissions market. However, in order to obtain carbon credits, third-party verification is required based on quantitative carbon reduction data. Accordingly, in this paper, we developed an AIoT high-efficiency street light for carbon emissions and conducted a performance analysis study to measure the luminous efficiency of the lighting fixture. To obtain carbon emissions rights, we used high-efficiency LED PKG, developed our own high-voltage PFC, and developed high-efficiency lighting fixtures capable of communication. For communication, the 2.4GHz LoRa method was adopted between the lighting fixture and the gateway. Lens design was conducted through simulation of Korea Expressway Corporation's standard streetlight types A, B, and C. The performance of the streetlight was verified as being more efficient than other existing products through the measurement of luminous efficiency by an accredited rating agency, and it is expected that carbon emissions rights will be obtained by reducing electrical energy through this.

Design of Ship-type Floating LiDAR Buoy System for Wind Resource Measurement inthe Korean West Sea and Numerical Analysis of Stability Assessment of Mooring System (서해안 해상풍력단지 풍황관측용 부유식 라이다 운영을 위한 선박형 부표식 설계 및 계류 시스템의 수치 해석적 안정성 평가)

  • Yong-Soo, Gang;Jong-Kyu, Kim;Baek-Bum, Lee;Su-In, Yang;Jong-Wook, Kim
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.483-490
    • /
    • 2022
  • Floating LiDAR is a system that provides a new paradigm for wind condition observation, which is essential when creating an offshore wind farm. As it can save time and money, minimize environmental impact, and even reduce backlash from local communities, it is emerging as the industry standard. However, the design and verification of a stable platform is very important, as disturbance factors caused by fluctuations of the buoy affect the reliability of observation data. In Korea, due to the nation's late entry into the technology, a number of foreign equipment manufacturers are dominating the domestic market. The west coast of Korea is a shallow sea environment with a very large tidal difference, so strong currents repeatedly appear depending on the region, and waves of strong energy that differ by season are formed. This paper conducted a study examining buoys suitable for LiDAR operation in the waters of Korea, which have such complex environmental characteristics. In this paper, we will introduce examples of optimized design and verification of ship-type buoys, which were applied first, and derive important concepts that will serve as the basis for the development of various platforms in the future.

Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System (효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석)

  • Kim Soo In;Jeon Young Jin;Lee Sang Bum;Kim Won Gyum
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.519-524
    • /
    • 2023
  • In hashing-based image retrieval, the hash code of a manipulated image is different from the original image, making it difficult to search for the same image. This paper proposes and evaluates a self-supervised deephashing model that generates perceptual hash codes from feature information such as texture, shape, and color of images. The comparison models are autoencoder-based variational inference models, but the encoder is designed with a fully connected layer, convolutional neural network, and transformer modules. The proposed model is a variational inference model that includes a SimAM module of extracting geometric patterns and positional relationships within images. The SimAM module can learn latent vectors highlighting objects or local regions through an energy function using the activation values of neurons and surrounding neurons. The proposed method is a representation learning model that can generate low-dimensional latent vectors from high-dimensional input images, and the latent vectors are binarized into distinguishable hash code. From the experimental results on public datasets such as CIFAR-10, ImageNet, and NUS-WIDE, the proposed model is superior to the comparative model and analyzed to have equivalent performance to the supervised learning-based deephashing model. The proposed model can be used in application systems that require low-dimensional representation of images, such as image search or copyright image determination.

Measurement of PM2.5 Concentrations and Comparison of Affecting Factors in Residential Houses in Summer and Autumn (여름과 가을의 주택실내 초미세먼지(PM2.5) 농도 측정 및 영향요인 비교)

  • Dongjun Kim;Gihong Min;Jihun Shin;Youngtae Choe;Kilyoong Choi;Sang Hyo Sim;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.1
    • /
    • pp.16-24
    • /
    • 2024
  • Background: Indoor PM2.5 concentrations in residential houses can be affected by various factors depending on the season. This is because not only do the climate characteristics depend on the season, but the activity patterns of occupants are also different. Objectives: The purpose of this study is to compare factors affecting indoor PM2.5 concentrations in apartments and detached houses in Daegu according to seasonal changes. Methods: This study included 20 households in Daegu, South Korea. The study was conducted during the summer (from July 10 to August 10, 2023) and the autumn (from September 11 to October 9, 2023). A sensor-based instrument for PM2.5 levels was installed in the living room of each residence, and measurements were taken continuously for 24 hours at intervals of one minute during the measurement period. Based on the air quality monitoring system data in Daegu, outdoor PM2.5 concentrations were estimated using ordinary kriging (OK) in Python. In addition, the indoor activities of the occupants were investigated using a time-activity pattern diary. The affecting factors of indoor PM2.5 concentration were analyzed using multiple regression analysis. Results: Indoor and outdoor PM2.5 concentrations of the residences during summer were 15.27±11.09 ㎍/m3 and 11.52±7.56 ㎍/m3, respectively. Indoor and outdoor PM2.5 concentrations during autumn were 13.82±9.61 ㎍/m3 and 9.57±5.50 ㎍/m3, respectively. The PM2.5 concentrations were higher in summer compared to autumn both indoors and outdoors. The primary factor affecting indoor PM2.5 concentration in summer was occupant activity. On the other hand, during the autumn season, the primary affecting factor was outdoor PM2.5 concentration. Conclusions: Indoor PM2.5 concentration in residential houses is affected by occupant activity such as the inflow of outdoor PM2.5 concentration, cooking, and cleaning, as found in previous studies. However, it was revealed that there were differences depending on the season.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.

Experimental Study to Evaluate Thermal and Mechanical Behaviors of Frozen Soils according to Organic Contents (유기물 함유량에 따른 동토 시료의 열적·역학적 거동 평가를 위한 실험적 연구)

  • Sangyeong Park;Hyeontae Park;Hangseok Choi;YoungSeok Kim;Sewon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • Recently, development of non-traditional energy such as oil sands has been actively conducted in the cold region such as Canada. Frozen soil has different thermal and mechanical characteristics from general soil due to its high organic contents. This study evaluated the impact of organic matter content on the thermal and mechanical behavior of frozen soil samples collected from Alberta, Canada, and Gangwon Province, South Korea. As the organic content increases, the maximum dry unit weight decreases and the optimum moisture content increases in compaction tests. In uniaxial compression tests under frozen conditions, the strength of the frozen specimens increased as the temperature decreased. The strength of Canada soil sample increased with higher organic matter content at low temperatures. However, the strength of frozen soil was not significantly affected by organic matter content due to the complex behavior and unfrozen water content. Thermal conductivity tests showed higher thermal conductivity in frozen conditions compared to unfrozen conditions, due to the higher thermal conductivity of ice compared to water. These findings provide essential data for geotechnical design and construction in large-scale projects such as oil sands development in cold regions. Further research is needed to explore the impact of organic matter content on different types of frozen soils.