• Title/Summary/Keyword: Energy converter

Search Result 1,449, Processing Time 0.025 seconds

Advanced LDC Test Bed Using Energy Recovery Technique for HEVs

  • Kim, Yun-Sung;Jung, Dong-Wook;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.911-919
    • /
    • 2013
  • This paper reports the development of test bed with the energy recovering technique using two-step boost converter. The device is utilized for LDC aging test of Hyundai Motor's LPI AVANTE HEV in mass production. The developed power recycle type test bed is designed as 1.5 kW class to test up to the maximum load power of LDC and is also designed to supply scant power supply up to 500 W after power recycle. The theoretical design analysis and operational characteristics analysis results of test bed are reported, and its practicality and reliability are verified through the test result. Also, the finally developed test bed confirms approximately 79~85 % energy saving effect compared to the usual traditional aging test system.

Three-Port Converters with a Flexible Power Flow for Integrating PV and Energy Storage into a DC Bus

  • Cheng, Tian;Lu, Dylan Dah-Chuan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1433-1444
    • /
    • 2017
  • A family of non-isolated DC-DC three-port converters (TPCs) that allows for a more flexible power flow among a renewable energy source, an energy storage device and a current-reversible DC bus is introduced. Most of the reported non-isolated topologies in this area consider only a power consuming load. However, for applications such as hybrid-electric vehicle braking systems and DC microgrids, the load power generating capability should also be considered. The proposed three-port family consists of one unidirectional port and two bi-directional ports. Hence, they are well-suited for photovoltaic (PV)-battery-DC bus systems from the power flow viewpoint. Three-port converters are derived by combining different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and the overall voltage conversion ratio. The derived converter topologies are able to allow for seven different modes of operation among the sources and load. A three-port converter which integrates a boost converter with a buck converter is used as a design example. Extensions of these topologies by combining the soft-switching technique with the proposed design example are also presented. Experiment results are given to verify the proposed three-port converter family and its analysis.

11-kV Series-Connected H-Bridge Multilevel Converter for Direct Grid Connection of Renewable Energy Systems

  • Islam, Md. Rabiul;Guo, Youguang;Zhu, Jian Guo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.70-78
    • /
    • 2012
  • Due to the variable nature of renewable energy resources and power demand by consumers, it is difficult to operate a power system installed with only one type of renewable energy resource. Grid-based renewable generation may be the only solution to overcome this problem. The conventional approach based on a low-voltage converter with power frequency transformer is commonly employed for grid connection of offshore renewable energy systems. Because of the heavy weight and large size of the transformer, the system can be expensive and complex in terms of installation and maintenance. In this paper, an 11-kV series connected H-bridge (SCHB) multilevel voltage source converter (VSC) is proposed to achieve a compact and light direct grid connection of renewable energy systems. This paper presents the design, simulation and analysis of a five level (5L)-SCHB and an eleven level (11L)-SCHB VSC for 11-kV grid-based renewable energy systems. The performance, cost, modulation scheme and harmonic spectra of the converter are analyzed.

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

A study Energy efficient converter (컨버터에서 에너지 변환에 관한 연구)

  • Jung, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.84-87
    • /
    • 2004
  • The Attractive features of the proposed converter has lower number of power devices and also has full regenerative capability, freewheeling in chopping or PWM mode, simple control strategy and faster demagnetization during commutation. The dump component energy requirements are much lower in this converter topology than another C-dump converters. As a result, The proposed converter has improved efficiency in the overall system than Modified C-dump converter, this thesis was approved its superiority by simulation and experimental results.

  • PDF

Motion characteristics of a floating wave energy converter with wave activating body type

  • Kim, Sung-soo;Lee, Jae-chul;Kang, Donghoon;Lee, Soon-sup
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.244-255
    • /
    • 2019
  • Interest in renewable energy has been increasing in recent years for many reasons, and there have been many studies on new types of wave energy converters and mechanisms for them. However, in this paper, motion characteristics of a wave energy converter with a wave activating body type is studied with an experiment. In order to conduct the experiment, a simple wave activating body type's wave energy converter is proposed. Experimental variations consist of connection type and location. The connection type controls the rotation motions of structures, and the connection location controls the distance between structures. The movement of floating structures, such as rotation, velocity, and acceleration, is measured with a potentiometer and a motion capture camera. Using the recorded data, the motion characteristics derived from the experimental variations are investigated.

Three Level DC/DC Converter Using Energy Recovery Snubber (에너지 회생 스너버를 적용한 3레벨 DC/DC 컨버터)

  • 조용현;김윤호;김은수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.64-73
    • /
    • 2001
  • This paper presents a Zero Voltage and Zero Current Switching (ZVZCS) 3-Level DC/DC converter. This converter overcomes the drawbacks presented by the conventional Zero Voltage Switching(ZVS) 3-Level converter, such as high circulating energy, severe parastic ringing on the rectifier diodes, and limited ZVS load range for the inner switches. The converter presented in this paper uses a phase shift control with a flying capacitor in the primary side to achieve ZVS for the outer switches. Additionally, the converter uses an energy recovery snubber to reset the primary current during the free-wheeling stage to achieve ZCS for the inner switches. The proposed converters are analyzed and verified on 6kW, 39kHz experimental prototype.

  • PDF

A New Power Factor Correction Circuit Using Boost Converter (부스트 컨버터를 이용한 새로운 역율 개선회로)

  • Kim, Marn-Go
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.355-357
    • /
    • 1996
  • With the wide-spread use of rectifier in electronic equipments, such problems as electronic components failures or equipment disorders have been occurred due to current harmonics. To overcome these problems, power factor correction circuits employing boost converter have been used. The switching stress of boost converter can be reduced by snubber circuit. Recently, research activities in snubber circuits have been directed to energy recovery snubber for improving the efficiency of power converter. In this study, a new passive snubber circuit which can recover trapped snubber energy without added control is proposed for boost converter The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The circuit operation is confirmed through simulation.

  • PDF

A Novel Switched-Capacitor Based High Step-Up DC/DC Converter for Renewable Energy System Applications

  • Radmand, Fereshteh;Jalili, Aref
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1402-1412
    • /
    • 2017
  • This paper presents a new high step-up dc/dc converter for renewable energy systems in which a high voltage gain is provided by using a coupled inductor. The operation of the proposed converter is based on a charging capacitor with a single power switch in its structure. A passive clamp circuit composed of capacitors and diodes is employed in the proposed converter for lowering the voltage stress on the power switch as well as increasing the voltage gain of the converter. Since the voltage stress is low in the provided topology, a switch with a small ON-state resistance can be used. As a result, the losses are decreased and the efficiency is increased. The operating principle and steady-states analyses are discussed in detail. To confirm the viability and accurate performance of the proposed high step-up dc-dc converter, several simulation and experimental results obtained through PSCAD/EMTDC software and a built prototype are provided.

Development of the IFC based IDF Converter for Energy Performance Assessment in the Early Design Phase (초기 설계단계 에너지 성능평가를 위한 IFC 기반 IDF 변환기 개발)

  • Kim, In-Han;Kim, Ji-Eun;Choi, Jung-Sik
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.2
    • /
    • pp.146-155
    • /
    • 2011
  • As the seriousness of environmental pollution being on a rise, a low carbon and environment-friendly design for energy efficiency has been issued. With respect to energy in the construction industry, an adoption of BIM which is possible for the various energy performance assessments in the early design phase has been actively working on. In the most cases of energy performance assessment, the data compatibility from the lack of standard software and format became a problem and the improvement for data compatibility system has been needed. This study is to develop the IFC based IDF converter as a middleware which connects between BIM software and energy analysis software. For the building energy performance assessment, Energy Plus and IFC are selected for the standard energy analysis software and its file format. Parameters are organized by steps and the integrated material library is built so it is trying to reduce the existing problem of energy software interface as much as possible. The development of IDF Converter will promote the spread of related fields with increasing the BIM standard and the utilization of energy performance assessment.