• Title/Summary/Keyword: Energy consumption efficiency

Search Result 1,789, Processing Time 0.025 seconds

Fault-tolerant Scheduling of Real-time Tasks with Energy Efficiency on Lightly Loaded Multicore Processors

  • Lee, Wan Yeon;Choi, Yun-Seok
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.92-100
    • /
    • 2018
  • In this paper, we propose a fault-tolerant scheduling scheme with energy efficiency for real-time periodic tasks on DVFS-enabled multicore processors. The scheme provides the tolerance of a permanent fault with the primary-backup task model. Also the scheme reduces the energy consumption of real-time tasks with the fully overlapped execution between each primary task and its backup task, whereas most of previous methods tried to minimize the overlapped execution between the two tasks. In order to the leakage energy loss of idle cores, the scheme activates a part of available cores with rarely used cores powered off. Evaluation results show that the proposed scheme saves up to 82% energy consumption of the previous method.

Analysis of Energy Saving Rate of Office Buildings According to the Items of an EPI Machine Part (에너지 성능지표 기계부문 항목에 따른 업무용 건물의 에너지 절감율 분석)

  • Lee, Ho Jin;Kim, Seo Hoon;Jung, Jae Uk;Jang, Cheol Yong;Song, Kyoo Dong
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.49-54
    • /
    • 2013
  • released by IEA, 2010, indicated that Korea's GDP, of 8 countries surveyed-Korea, Frans, Germany, Italy, Japan, the UK, the USA, and Australia-was the lowest, but the electric consumption per head was third, following America and Australia. Thus, our government has been striving to reduce energy usage and especially to lessen the energy used in buildings, proposing a variety of road maps such as 'building energy efficiency rating' and 'energy saving design standards of buildings'. Accordingly, this study investigated the effect of the items of machine part among EPI items on the energy saving rate. I measured energy usage by ECO2 program, for simulation program, that is used for the building energy efficiency rating. Result showed that items concerning control of pumps and fans had much more saving rate than the ones concerning efficiency of heater and cooler that had bigger scores assigned among EPI items. Result showed that items concerning control of pumps and fans had much more saving rate than the ones concerning efficiency of heater and cooler that had bigger scores assigned among EPI items. Therefore, I think that grades assigned to items in energy performance index need to be corrected.

Heat Balance during the Electrowinning of Neodymium Metal in Molten Salt (네오디뮴 금속의 전해 채취 중의 열수지)

  • Cho, Sung-Wook;Yu, Jeong-Hyun;Choi, Ho-Gil
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.81-87
    • /
    • 2022
  • Energy consumption per unit weight of metal (kwh/kg of metal) is one of the most important economic indicators in the process of molten salt electrolysis. It is related to the heat loss of salt bath and the current efficiency of the process. The current efficiency is highly dependent on electrolysis temperature. On the other hand, the temperature of salt bath may increase significantly due to the difference (larger energy input than consumption) in heat balance at the beginning of electrolysis, which may cause different electrolysis temperature from an initially targeted value. This results in a bad effect on current efficiency. Therefore, it will be helpful to the reduction of energy consumption to compare the calculated and measured values of the temperature change of salt bath through the heat balance review at the early stage of electrolysis and to evaluate the energy loss to outside. In this study, based on the authors' experimental data, the heat balance was reviewed at the beginning of the electrolysis, and it was possible to evaluate the energy loss to the outside and the increase of the temperature of the salt bath quantitatively. Through such a method, heat loss reduction plan can be derived and current efficiency can be improved so that energy consumption can be reduced.

A Data Transmission Mode Change Method for Improving Energy Efficiency in IoT Environments

  • Lee, Sukhoon;Kim, Kwangsu;Jeong, Dongwon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.57-69
    • /
    • 2020
  • In general, many IoT devices, including smart phones, use LTE, Wi-Fi, and Bluetooth, and these communication modules generate a lot of energy consumption during periodic data transmission. This paper proposes a method of the data transmission mode change for improving energy efficiency in various communication environments that mobile devices may encounter. We propose an algorithm for setting the mode considering energy efficiency, data transmission performance and cost when the mobile device transmits data, and transmitting the data in an optimized manner according to the state of the mobile device. The proposed algorithm is implemented through experiments on energy efficiency for each communication module, and the scenario is used to verify how efficiently the proposed algorithm uses energy.

Effect of Ultrasonic Energy in the Engine using Diesel Fuel Blended Rape-seed Oil (유채혼합유를 사용하는 기관에서 초음파에너지의 영향)

  • Kwon, K.R.;Ko, K.N.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.5-10
    • /
    • 2005
  • The effect of ultrasonic energy for diesel fuel and blend oil has been revealed in this paper. The experimental setup consisted of a high speed diesel engine with 4 cylinder, dynamometer and ultrasonic fuel feeding system. Ultrasonic energy was added to diesel fuel and blend oil, which is a blend of diesel fuel and rape-seed oil. As engine speed was changed, engine torque and power, brake specific fuel consumption and thermal efficiency were measured in detail. As the results, by adding ultrasonic energy to diesel fuel and blend oil, the engine performance was improved in range of the experiment. The effect of improvement on brake specific fuel consumption and thermal efficiency for blend oil is higher than that for diesel fuel. When ultrasonic energy was added to diesel fuel or blend oil, a rise in engine torque for diesel fuel was higher than that for blend oil, but the effect of ultrasonic energy was small. From these results, it may be desirable to add ultrasonic energy to blend oil for the use of blend oil to diesel engine.

  • PDF

A Study on Energy Consumption Model for Driving Systems of Machine Tools (공작기계 구동장치의 에너지 소비 모델에 대한 연구)

  • Park, HyeonWoong;Lee, JeongWon;Seol, Won-Kyu;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.61-62
    • /
    • 2017
  • The motor used as a drive in machine tools is the largest part of energy consumption. Therefore, it is essential to optimize the energy consumption of the motor to improve the energy efficiency of machine tools. In this paper, the energy consumption model of motor drives is derived from the operating conditions of machine tools. The validity of the derived model is verified through the experiments.

  • PDF

A Tutorial: Information and Communications-based Intelligent Building Energy Monitoring and Efficient Systems

  • Seo, Si-O;Baek, Seung-Yong;Keum, Doyeop;Ryu, Seungwan;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2676-2689
    • /
    • 2013
  • Due to increased consumption of energy in the building environment, the building energy management systems (BEMS) solution has been developed to achieve energy saving and efficiency. However, because of the shortage of building energy management specialists and incompatibility among the energy management systems of different vendors, the BEMS solution can only be applied to limited buildings individually. To solve these problems, we propose a building cluster based remote energy monitoring and management (EMM) system and its functionalities and roles of each sub-system to simultaneously manage the energy problems of several buildings. We also introduce a novel energy demand forecasting algorithm by using past energy consumption data. Extensive performance evaluation study shows that the proposed regression based energy demand forecasting model is well fitted to the actual energy consumption model, and it also outperforms the artificial neural network (ANN) based forecasting model.

Inter-clustering Cooperative Relay Selection Schemes for 5G Device-to-device Communication Networks

  • Nasaruddin, Nasaruddin;Yunida, Yunida;Adriman, Ramzi
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • The ongoing adoption of 5G will increase the data traffic, throughput, multimedia services, and power consumption for future wireless applications and services, including sensor and mobile networks. Multipath fading on wireless channels also reduces the system performance and increases energy consumption. To address these issues, device-to-device (D2D) and cooperative communications have been proposed. In this study, we propose two inter-clustering models using the relay selection method to improve system performance and increase energy efficiency in cooperative D2D networks. We develop two inter-clustering models and present their respective algorithms. Subsequently, we run a computer simulation to evaluate each model's outage probability (OP) performance, throughput, and energy efficiency. The simulation results show that inter-clustering model II has the lowest OP, highest throughput, and highest energy efficiency compared with inter-clustering model I and the conventional inter-clustering-based multirelay method. These results demonstrate that inter-clustering model II is well-suited for use in 5G overlay D2D and cellular communications.

Clustering Algorithms for Reducing Energy Consumption - A Review

  • Kinza Mubasher;Rahat Mansha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.109-118
    • /
    • 2023
  • Energy awareness is an essential design flaw in wireless sensor network. Clustering is the most highly regarded energy-efficient technique that offers various benefits such as energy efficiency and network lifetime. Clusters create hierarchical WSNs that introduce the efficient use of limited sensor node resources and thus enhance the life of the network. The goal of this paper is to provide an analysis of the various energy efficient clustering algorithms. Analysis is based on the energy efficiency and network lifetime. This review paper provides an analysis of different energy-efficient clustering algorithms for WSNs.

A Novel Improved Energy-Efficient Cluster Based Routing Protocol (IECRP) for Wireless Sensor Networks

  • Inam, Muhammad;Li, Zhuo;Zardari, Zulfiqar Ali
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • Wireless sensor networks (WSNs) require an enormous number of sensor nodes (SNs) to maintain processing, sensing, and communication capabilities for monitoring targeted sensing regions. SNs are generally operated by batteries and have a significantly restricted energy consumption; therefore, it is necessary to discover optimization techniques to enhance network lifetime by saving energy. The principal focus is on reducing the energy consumption of packet sharing (transmission and receiving) and improving the network lifespan. To achieve this objective, this paper presents a novel improved energy-efficient cluster-based routing protocol (IECRP) that aims to accomplish this by decreasing the energy consumption in data forwarding and receiving using a clustering technique. Doing so, we successfully increase node energy and network lifetime. In order to confirm the improvement of our algorithm, a simulation is done using matlab, in which analysis and simulation results show that the performance of the proposed algorithm is better than that of two well-known recent benchmarks.