• Title/Summary/Keyword: Energy change ratio

Search Result 724, Processing Time 0.034 seconds

Bandgap Engineering in CZTSSe Thin Films via Controlling S/(S+Se) Ratio

  • Vijay C. Karade;Jun Sung Jang;Kuldeep Singh, Gour;Yeonwoo Park;Hyeonwook, Park;Jin Hyeok Kim;Jae Ho Yun
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2023
  • The earth-abundant element-based Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells (TFSCs) have attracted greater attention in the photovoltaic (PV) community due to their rapid development in device power conversion efficiency (PCE) >13%. In the present work, we demonstrated the fine-tuning of the bandgap in the CZTSSe TFSCs by altering the sulfur (S) to the selenium (Se) chalcogenide ratio. To achieve this, the CZTSSe absorber layers are fabricated with different S/(S+Se) ratios from 0.02 to 0.08 of their weight percentage. Further compositional, morphological, and optoelectronic properties are studied using various characterization techniques. It is observed that the change in the S/(S+Se) ratios has minimal impact on the overall Cu/(Zn+Sn) composition ratio. In contrast, the S and Se content within the CZTSSe absorber layer gets altered with a change in the S/(S+Se) ratio. It also influences the overall absorber quality and gets worse at higher S/(S+Se). Furthermore, the device performance evaluated for similar CZTSSe TFSCs showed a linear increase and decrease in the open circuit voltage (Voc) and short circuit current density (Jsc) of the device with an increasing S/(S+Se) ratio. The external quantum efficiency (EQE) measured also exhibited a linear blue shift in absorption edge, increasing the bandgap from 1.056 eV to 1.228 eV, respectively.

A Study on the Optimal Method of Eco-Friendly Recycling through the Comparative Analysis of the Quantitative Calculation and Scope of Recycling

  • Seung-jun WOO;Eun-gyu LEE;Chul-hyun NAM;Kang-hyuk LEE;Woo-Taeg KWON;Hee-Sang YU
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.3
    • /
    • pp.1-11
    • /
    • 2024
  • Purpose: The purpose of this study is to present an efficient emission reduction ratio of plastic to reduce carbon dioxide, the main cause of greenhouse gases. Research design, data and methodology: This study calculated the absolute value of carbon dioxide by setting an equation through the emission coefficient using the US EPA's WARM model. Results: In the recycling ratio of 70%, it was found that the energy recovery ratio was 15.6%, which was the energy recovery ratio without generating carbon dioxide. When carbon dioxide is generated by changing plastic waste emissions, optimal efficiency is achieved by reducing emissions by 10% to 30% of energy recovery ratio, 20% to 50% of energy recovery ratio, and 30% to 80% or more of energy recovery ratio. Conclusions: The recycling rate should be set at a minimum of 70%, so that a carbon dioxide-free energy recovery rate could be obtained during the recycling process, supporting an eco-friendly basis for environmental policies aimed at this rate. In addition, it was possible to suggest that it is essential to reduce emissions by at least 30% for eco-friendly recycling measures that can achieve both economic and environmental feasibility in the energy recovery process through incineration during recycling in Korea.

A Comparative Analysis of the Energy Load due to Window Area Ratio of Domestic Public Buildings

  • An, Kwang-Ho;Hyun, Eun-Mi;Kim, Yong-Sik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • In the case of public buildings, fast communication and transparency in the administration and the public, as well as ensuring visibility and lighting performance using a glass curtain wall is symbolically expressed through the transparent glass skin. This study is a simulation in order to derive the basic data for the establishment of the improvement of the heating and cooling load analysis according to the window area ratio changes with respect to the high effectiveness of the government's large public building energy consumption analysis and green building certification system of guidelines was analyzed by a change in the energy load. Glass curtain wall is light and visibility, the symbolic meaning of communication, etc., but is widely used in a variety of characteristics, in terms of energy consumption being disadvantaged sheath plan should have been. Design, including the Atrium, is much less energy than energy consumption by the window area ratio. Thus, while compliance with design guide lines, the atrium and I like the burden of a large space ratio and energy load consists of only glass suggest that require more research on that given in the guidelines.

Optical Transmittance Change of Pd Thin Film by Hydrogen Absorption and Desorption (수소 흡수-방출에 의한 Pd 박막의 광투과도 특성변화)

  • Cho, Young sin
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.4
    • /
    • pp.287-292
    • /
    • 2001
  • The optical transmittance change of Pd thin film due to hydrogen absorption and desorption was examined at room temperature. Hydrogen absorption and desorption cycling effects on optical transmittance were measured 6 times in the pressure range between 0 and 640 torr. Optical transmittance of Pd film was increasing with increasing hydrogen pressure. Ratio of optical transmittance to the change of pressure at $\beta$ phase is bigger than that of low hydrogen pressure range.

  • PDF

Optical Transmittance of PdHx Thin Film (PdHx 박막의 광투과도)

  • Cho, Young sin
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.3
    • /
    • pp.201-209
    • /
    • 2001
  • The change of optical transmittance of $PdH_x$ thin film due to hydrogen concentration change was measured at room temperature. Pd film($312{\AA}$ thick) was made by thermal evaporation on glass substrate. Hydrogen absorption and desorption cycling effect on optical transmittance was measured 4 times in the pressure range between 0 and 640 torr. Ratio of optical transmittance to the change of ln pressure(torr) increases with increasing number of hydrogen A-D cyclings in the ${\beta}$ phase.

  • PDF

A Decomposition Analysis of Energy Productivity Change in Korean Manufacturing Industries: A Distance Function Approach (제조업 에너지 생산성 분해분석)

  • Kim, Kwang-Uk;Hwang, Seok-Joon
    • Environmental and Resource Economics Review
    • /
    • v.24 no.2
    • /
    • pp.411-433
    • /
    • 2015
  • This paper decomposed energy productivity changes across 14 Korean manufacturing industries into 5 components, technological catch-up(EC), technological progress(TC), and changes in labor-energy ratio(LC), capital-energy ratio(KC) and energy mix(EMC). Then we also figured out the possible relationship between energy productivity change and export growth rate across the industries. It is found that (1) technological progress, changes in capital-energy ratio and energy mix contribute to energy productivity growth in Korea during the sample period, (2) technological progress is the primary driving forces for energy productivity growth, (3) increase in export growth rate had a positive impact on energy productivity growth excepting a part of energy-intensive industries.

The Effect of Turbulent Premixed Flame on the Wave Scattering (난류예혼합화염이 음파의 산란에 미치는 영향에 관한 연구)

  • Cho, Ju-Hyeong;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Analytical investigation of acoustic wave scattering from turbulent premixed flames was conducted to evaluate the acoustic energy amplification/damping. Such acoustic energy change is attributed to the acoustic velocity jump due to flame's heat release. Small perturbation method up to second order and stochastic analysis were utilized to formulate net acoustic energy and the energy transfer from coherent to incoherent energy. Randomly wrinkled flame surface is responsible for the energy transfer from coherent to incoherent field. Nondimensional parameters that govern net acoustic energy were determined: rms height and correlation length of flame front, incident wave frequency, incidence angle, and temperature ratio. The dependence of net acoustic energy upon these parameters is illustrated by numerical simulations in case of Gaussian statistics of flame front. Total net energy was amplified and the major factors that affect such energy amplification are incidence angle and temperature ratio. Coherent (incoherent) energy is damped (amplified) with rms height and correlation length of flame front.

  • PDF

Thermodynamic performance of 2-PCM latent heat thermal energy storage system (2-PCM 잠열축열 시스템의 열역학적 성능)

  • 이세균;우정선;이재효;김한덕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.189-199
    • /
    • 2000
  • This paper investigates the thermodynamic performance of latent heat thermal energy storage system using two phase change materials(2-PCM system). The thermodynamic merit of using 2-PCM is clear in terms of exergetic efficiency, which is substantially higher than that of 1-PCM system. Optimum phase change temperature to maximize the exergetic efficiency exists for each case. The heat transfer area ratio of high temperature storage unit, X, becomes another important parameter for 2-PCM system if the phase change temperatures of given materials are different from those of optimum conditions. It is a good approximation for X$_{opt}$ to be 0.5 when optimum phase change temperatures are used. Otherwise X$_{opt}$ is determined differently as a function of given phase change temperatures.res.

  • PDF

2-Step Damage Assessment of 3-D Truss Structures Using Extended Kalman Filter Theory (확장 칼만 필터 이론을 이용한 3차원 트러스 구조물의 2단계 손상 추정법)

  • Yoo, Suk-Kyoung;Suh, Ill-Gyo;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.41-49
    • /
    • 2002
  • In this paper, a study of 2-step damage detection for space truss structures using the extended Kalman filter theory is presented. Space truss structures are composed of many members, so it is difficult to find damaged member from the whole system. Therefore, 2-step damage identification method is applied to detect the damaged members. First, kinetic energy change ratio is used to find damage region including damaged member and then detect damaged member using extended Kalman filtering algorithm in damage region. The effectiveness of proposed method is verified through the numerical examples.

  • PDF

Energy Performance Analysis the Common House Pansang Type and Tower (공동주택의 판상형과 타워형 에너지 성능 비교 분석)

  • Yoon, Sung-Meen;Lee, Kyung-Hee;Ahn, Young-Chull
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.57-64
    • /
    • 2013
  • This study focus on the analysis of the energy performance in accordance with apartment houses arrangement type by using Ecotect Analysis. Korea, energy-poor country, the rate of dependence on imports amount to 94%, have to reduce energy consumption part of building except in industry and transport which affect the economic. Apartment houses are built in various forms in order to reduce energy, are modelled in each window area ratio, shape, orientation, climate through simulation. Through this study, we can analyze energy performance by form, window area ratio, orientation, climate change and know the optimal elements by the form. In particular, although there have been studied research on the window area ratio and research related to the arrangement form, determined that the information on the regional climate characteristics and the direction of placement is less than existing research. To supplement those problem, adding to seven direction(West, S-60-W, S-30-W, South, S-30-E, S-60-E, East) and climatic element(southern region) is characteristic of this study. The form of apartment houses was modelled for apartment houses built in the 10 years since. And each modeling were analyzed by Ecotect Analysis.