• Title/Summary/Keyword: Energy carrier

Search Result 850, Processing Time 0.029 seconds

Propeller Wake Measurement of a Model Ship in Self Propulsion Condition using Towed Underwater PIV (입자영상유속계를 이용한 자항상태 모형선의 프로펠러 후류 계측)

  • Seo, Jeonghwa;Yoo, Geuk Sang;Lim, Tae Gu;Seol, Dong Myung;Han, Bum Woo;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.171-177
    • /
    • 2014
  • A two-dimensional particle image velocimetry (2D PIV) system in a towing tank is employed to measure a wake field of a very large crude oil carrier model with rotating propeller in self propulsion condition, to identify characteristics of wake of a propeller working behind a ship. Phase-averaged and time-averaged flow fields are measured for a horizontal plane. Scale ratio of the model ship is 1/100 and Froude number is 0.142. By phase-averaging technique, trajectories of tip vortex and hub vortex are identified and characteristic secondary vortex distribution is observed in the hub vortex region. Propeller wake on the starboard side is more accelerated than that on the port side, due to the difference of inflow of propeller blades. The hub vortex trajectory tends to face the port side. With the fluctuation part of the phase-averaged velocity field, turbulent kinetic energy (TKE) is also derived. In the center of tip vortex and hub vortex region, high TKE concentration is observed. In addition, a time-averaged vector field is also measured and compared with phase-averaged vector field.

Reduced graphene oxide field-effect transistor for biomolecule detection and study of sensing mechanism

  • Kim, D.J.;Sohn, I.Y.;Kim, D.I.;Yoon, O.J.;Yang, C.W.;Lee, N.E.;Park, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.431-431
    • /
    • 2011
  • Graphene, two dimensional sheet of sp2-hybridized carbon, has attracted an enormous amount of interest due to excellent electrical, chemical and mechanical properties for the application of transparent conducting films, clean energy devices, field-effect transistors, optoelectronic devices and chemical sensors. Especially, graphene is promising candidate to detect the gas molecules and biomolecules due to the large specific surface area and signal-to-noise ratios. Despite of importance to the disease diagnosis, there are a few reports to demonstrate the graphene- and rGO-FET for biological sensors and the sensing mechanism are not fully understood. Here we describe scalable and facile fabrication of rGO-FET with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}1$-antichymotrypsin (PSA-ACT) complex, in which the ultrathin rGO sensing channel was simply formed by a uniform self-assembly of two-dimensional rGO nanosheets on aminated pattern generated by inkjet printing. Sensing characteristics of rGO-FET immunosensor showed the highly precise, reliable, and linear shift in the Dirac point with the analyte concentration of PSA-ACT complex and extremely low detection limit as low as 1 fg/ml. We further analyzed the charge doping mechanism, which is the change in the charge carrier in the rGO channel varying by the concentration of biomolecules. Amenability of solution-based scalable fabrication and extremely high performance may enable rGO-FET device as a versatile multiplexed diagnostic biosensor for disease biomarkers.

  • PDF

Work function variation of doped ZnO nanorods by Kelvin probe force microscopy

  • Ben, Chu Van;Hong, Min-Chi;Yang, Woo-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.446-446
    • /
    • 2011
  • One dimensional (1-D) structures of ZnO nanorods are promising elements for future optoelectronic devices. However there are still many obstacles in fabricating high-quality p-type ZnO up to now. In addition, it is limited to measure the degree of the doping concentration and carrier transport of the doped 1-D ZnO with conventional methods such as Hall measurement. Here we demonstrate the measurement of the electronic properties of p- and n-doped ZnO nanorods by the Kelvin probe force microscopy (KPFM). Vertically aligned ZnO nanorods with intrinsic n-doped, As-doped p-type, and p-n junction were grown by vapor phase epitaxy (VPE). Individual nanowires were then transferred onto Au films deposited on Si substrates. The morphology and surface potentials were measured simultaneously by the KPFM. The work function of the individual nanorods was estimated by comparing with that of gold film as a reference, and the doping concentration of each ZnO nanorods was deduced. Our KPFM results show that the average work function difference between the p-type and n-type regions of p-n junction ZnO nanorod is about ~85meV. This value is in good agreement with the difference in the work function between As-doped p- and n-type ZnO nanorods (96meV) measured with the same conditions. This value is smaller than the expected values estimated from the energy band diagram. However it is explained in terms of surface state and surface band bending.

  • PDF

Effect of Ga Addition on the Electrical and Structural Properties of (Zn,Mg)O Transparent Electrode Films (Ga 첨가량이 (Zn,Mg)O 투명전극 막의 전기적, 결정학적 특성에 미치는 영향)

  • Suh, Kwang-Jong;Wakahara, Akihiro;Yoshida, Akira
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.491-495
    • /
    • 2005
  • (Zn,Mg)O (ZMO) thin films doped with Ga $(0\~0.03mol\%)$ in the target source were prepared by pulsed laser deposition on c-plane sapphire substrates at $500^{\circ}C$, and the effect of Ga contents on the properties of the electrical, optical and crystal properties of the deposited films was investigated. From X-ray diffraction patterns, ZMO film doped with $0.02 mol\%$ Ga showed crystal structure with c-axis preferred orientation, showing only the (0002) and (0004) diffraction peaks. In contrast, ZMO film doped with $Ga=0.03 mol\%$ showed a randomly oriented crystal structure. All the samples were highly transparent, showing the transmittance values of above $85\%$ in the visible region. For all the Ga doped ZMO films, the value of energy band gap was found to be about 3.5 eV, regardless of their Ga contents. From the Hall measurements, the resistivity and the carrier density for the ZMO film doped with $0.01 mol\%$ Ga were about $5\times10^{-4}\Omega-cm$ and $2\times10^{21}cm^{-3}$, respectively.

P-Type Doping of Graphene Films by Hybridization with Nickel Nanoparticles

  • Lee, Su Il;Song, Wooseok;Kim, Yooseok;song, Inkyung;Park, Sangeun;Cha, Myung-Jun;Jung, Dae Sung;Jung, Min Wook;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.208-208
    • /
    • 2013
  • Graphene has emerged as a fascinating material for next-generation nanoelectronics due to its outstanding electronic properties. In particular, graphene-based field effect transistors (GFETs) have been a promising research subject due to their superior response times, which are due to extremely high electron mobility at room temperature. The biggest challenges in GFET applications are control of carrier concentration and opening the bandgap of graphene. To overcome these problems, three approaches to doping graphene have been developed. Here we demonstrate the decoration of Ni nanoparticles (NPs) on graphene films by simple annealing for p-type doping of graphene. Ni NPs/graphene films were fabricated by coating a $NiCl2{\cdot}6H2O$ solution onto graphene followedby annealing. Scanning electron microscopy and atomic force microscopy revealed that high-density, uniformly sized Ni NPs were formed on the graphene films and the density of the Ni NPs increased gradually with increasing $NiCl2{\cdot}6H2O$ concentration. The formation of Ni NPs on graphene films was explained by heat-driven dechlorination and subsequent particlization, as investigated by X-ray photoelectron spectroscopy. The doping effect of Ni NPs onto graphene films was verified by Raman spectroscopy and electrical transport measurements.

  • PDF

A Flexible Amorphous $Bi_5Nb_3O_{15}$ Film for the Gate Insulator of the Low-Voltage Operating Pentacene Thin-Film Transistor Fabricated at Room Temperature

  • Kim, Jin-Seong;Cho, Kyung-Hoon;Seong, Tae-Geun;Choi, Joo-Young;Nahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.17-17
    • /
    • 2010
  • The amorphous $Bi_5Nb_3O_{15}$ film grown at room temperature under an oxygen-plasma sputtering ambient (BNRT-$O_2$ film) has a hydrophobic surface with a surface energy of $35.6\;mJm^{-2}$, which is close to that of the orthorhombic pentacene ($38\;mJm^{-2}$, resulting in the formation of a good pentacene layer without the introduction of an additional polymer layer. This film was very flexible, maintaining a high capacitance of $145\;nFcm^{-2}$ during and after 10s bending cycles with a small curvature radius of 7.5 mm. This film was optically transparent. Furthermore, the flexible, pentacene-based, organic thin-film transistors (OTFTs) fabricated on the polyethersulphone substrate at room temperature using a BNRT-$O_2$ film as a gate insulator exhibited a promising device performance with a high field effect mobility of $0.5\;cm^2V^{-1}s^{-1}$, an on/off current modulation of $10^5$ and a small subthreshold slope of $0.2\;Vdecade^{-1}$ under a low operating voltage of -5 V. This device also maintained a high carrier mobility of $0.45\;cm^2V^{-1}s^{-1}$ during the bending with a small curvature radius of 9 mm. Therefore, the BNRT-$O_2$ film is considered a promising material for the gate insulator of the flexible, pentacene-based OTFT.

  • PDF

A Study on the Optical Bistable Characteristic of a Multi-Section DFB-LD (다전극 DFB-LD의 광 쌍안정 특성에 관한 연구)

  • Kim, Geun-Cheol;Jeong, Yeong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.1-11
    • /
    • 2002
  • A multi-section DFB-LD shows optical bistability subject to externally injected light signal, then it has potential applications such as wavelength conversion and optical logic gates. In this paper, we have studied the optical bistability in multi-section DFB-LD using split-step time-domain model. It is confirmed that the multi-section DFB-LD, which is excited inhomogeneously, shows bistability. The optical bistable characteristics are investigated when input light is injected into a absorptive region. Simulation results show that multi-section DFB-LD works as a flip-flop depending on the set-reset optical pulse which has a few ns in switching time and a few pj in switching energy, so that it can act as a optical logic device. Besides, if we change the carrier lifetime and the differential gain coefficient, it is expected that the response time of optical output signal can be reduced.

The Ion Transport Phenomena through the Liquid Membrane with Macrocyclic Compound (I). Mechanism of Potassium Ion Transport through $H_2O-CHl_3-H_2O$ System with Dibenzo-18-Crown-6 (마크로고리 화합물을 운반체로 하는 액체막을 통한 이온의 운반에 관한 연구 (제1보). Dibenzo-18-Crown-6-(DBC)/$H_2O-CHCl_3-H_2O$계에서 칼륨이온의 운반 메카니즘)

  • Yoon, Chang-Ju;Lee, Shim-Sung;Koo, Chang-Hyun;Kim, Si-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.163-169
    • /
    • 1984
  • The transport rates of $K^+$ion through CHCl$_3$ liquid membrane containing dibenzo-18-crown-6(DBC) as a carrier molecule have been determined at $25^{\circ}C$. The transport rates depend highly on the ion concentration and on the nature of anion. It is concluded that $K^+$ions are transported in the form of ion-pair. In the case of potassium picrate, however, it is found that the transport proceeds with the formation of the incomplete ion-pair in the concentration less than 1.0 ${\times}10^{-3}$M of picrate, while with the complete formation of ion-pair in the concentration more than 1.0 ${\times}10^{-3}$M of picrate. Seven steps of the transport process are suggested and they can be illustrated in terms of energy barrier model as a function of the position of ionic species in the membrane.

  • PDF

A Vehicle Classification Method in Thermal Video Sequences using both Shape and Local Features (형태특징과 지역특징 융합기법을 활용한 열영상 기반의 차량 분류 방법)

  • Yang, Dong Won
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.97-105
    • /
    • 2020
  • A thermal imaging sensor receives the radiating energy from the target and the background, so it has been widely used for detection, tracking, and classification of targets at night for military purpose. In recognizing the target automatically using thermal images, if the correct edges of object are used then it can generate the classification results with high accuracy. However since the thermal images have lower spatial resolution and more blurred edges than color images, the accuracy of the classification using thermal images can be decreased. In this paper, to overcome this problem, a new hierarchical classifier using both shape and local features based on the segmentation reliabilities, and the class/pose updating method for vehicle classification are proposed. The proposed classification method was validated using thermal video sequences of more than 20,000 images which include four types of military vehicles - main battle tank, armored personnel carrier, military truck, and estate car. The experiment results showed that the proposed method outperformed the state-of-the-arts methods in classification accuracy.

The effect of thermal annealing and growth of $AgInS_2$/GaAs single crystal thin film by hot wal epitaxy (Hot wall Epitaxy(HWE)법에 의한 $AgInS_2$단결정 박막 성장과 열처리 효과)

  • Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.6
    • /
    • pp.274-284
    • /
    • 2001
  • A stoichimetric mixture of evaporating materials for $AgInS_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films. $AgInS_2$mixed crystal was deposited on thorughly etched semi-insulating GaAs(100) substrate by the Hot wall Epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of $AgInS_2$ single crystal the films measured from Hall effect by van der Pauw method are $9.35\times 10^{16}/\terxtm{cm}^3$ and $294\terxtm{cm}^2$/V.s at 293 K, respectively. From the optical absorption measurement the temperature dependence of the energy band gap on AgInS$_2$ single crystal thin film was found to be $E_g$(T)= 2.1365eV-($9.89\times 10^{-3}eV/T^2$/(2930+T). After the as-grown $AgInS_2$ single crystal thin films was annealed in $Ag^-S^-$ and In-atmospheres, the origin of point defects of AgInS$_2$ single crystal the films has been investigated by using the photoluminescence(PL) at 10K. The native defects of $V_{Ag},V_s, Ag_{int}$ and $S_{int}$ int/ obtained from PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $AgInS_2$ single crystal thin films to an optical p-type. Also, we confirmed that In in $AgInS_2$ /GaAs did not form the native defects because In is $AgInS_2$ single crystal thin films did exist in the form of stable bonds.

  • PDF